AN IMPROVED MODEL
 BALL DROP SEXTANT

By
A M Weber
Air Navigation Devices Development Division

Technical Development Report No 90

CIVIL AERONAUTICS ADMINISTRATION TECHNICAL DEVELOPMENT

INDIANAPOLIS, INDIANA
March 1949
1344

TABLE OF CONTENTS

INTRODUCTION

The ball drop sextant is an artificial horizon sextant for use in celestial navigation Whereas, in the conventional artificial horizon sextant a bubble is used to establish the horizontal plane from which celestial altitudes are measured, the ball drop sextant uses the line of fall of a small steel ball to establish a vertical line, from which the coaltitude and hence the altitude of celestial objects may be measured The instrument is capable of recording any thlt present at the instant of observation and the correction for such tilt may be obtained from a tilt table, furnished with the sextant, and may be applied to the observed altıtude.

The ball drop sextant was first called to the attention of the Office of Technical Development by the United States Naval Observatory. The Observatory had constructed a preliminary model based on an idea originated by Mr. Fred Hagner, and had incorporated certain ideas which, it was belreved, would considerably 1 mprove this model. A detailed description of this preliminary model may be foundin Report on Hagner Averaging Sextant, published by the United States Naval Observatory June 15, 1942. An inspection of the Naval Observatoryinstrument revealed certain apparentadvantages of the ball drop sextant over conventional types, whichmade the instrument appearworthy offurther development These were as follows

1 The simplicity of the operating principle permitted sturdier construction.

2 Directmeasurement between the line of sightand the vertical permitted one degree of altitude to be represented by one degree on the arc, thus eliminating reduction and tending toward greater accuracy

3 Aligning a stablecross hair intersection with a star requires less concentration on the part of an observer than aligning an unstable bubble

4 Provisıon was made to correct for tilt
5. The direct sighting method obviated some danger of confusing the 1 dentity of stars.

It was therefore decided to redesign the ball recording $s e x t a n t$ and build a new model for further testing and comparison with a high grade commercially manufactured bubble sextant. The improved ball drop sextant was constructed by the Naval Observatory and was delivered to the CAA during 1946.

IMPROVEMENTS IN NEW MODEL BALL DROP SEXTANT

The improvements incorporated in the new model ball drop sextant included the following

1. The werght was decreased.

2 A continuous roll of recording material was provided, makingit possible to take several hundred observations before changing the roll, whereas in the original model it was necessary to substitute a new recording disk or erase marks from the old one after each observation

3 A telescopic sight was provided on the new instrument
4. Twotelescopes were provided, one direct sighting ($F_{1 g}$ l) and one elbow type (Fig 2), for the purpose of bending the light rays and relieving the $s t r a i n$ of direct sighting on celestial bodies at highaltitudes These telescopes can be interchanged at the option of the observer

Both the original and new model sextants allowed a varied number of balls to be used for anobservation. Eightballs were provided with the new instrument and this number was usedinall observations, a mean of the pattern formed by the eight balls being used as the reading A typical observational record showing the tilt scale and cross hair 'meaning" an e1ght-ball pattern is shown in $F_{1 g}$. 3. Operation of the ball drop sextant by an observer is illustrated in Figs 4 and 5.

Fig 1 Ball Drop Sextant, Direct Sighting Telescope

Fig. 2 Ball Drop Sextant, Elbow Telescope

COMPARISON BUBBLE SEXTANT

The bubble sextant chosen for the com~ parison tests was a Pioneer instrument, Type 3014-1-A, manufactured by the Bendix Aviation Corporation This sextantis equipped with an automatic averaging device, which, overanobserving period of two minutes, will automatically record the average of 60 observations spaced at two-second intervals, the method being to maintain as nearly as possible, coincrdence between the bubble and the celestial body during the entire two-minute period This instrument also may be used to take a single instantaneous observation. A view of this sextant being operated by an observer is shown in Fig. 5

PRELIMINARY GROUND OBSERVATIONS

Before using either type of sextant in an alrplane, a long series of ground observations was taken with each instrument, some at night but a greater number in the daytime The method used was to make a series of observations, noting the time of each, and then to compute the correct altitude for the body observed at the known position and time of observation. The difference between the observed and computed altıtudes for each observation indicated the error. Aftera series of 231 ground observations with the ball drop sextant (using the direct sighting telescope) a constanterror of plus 13 minutes was found, while a constantminus error of 5 minutes was found in the same instrument after 193 observations with the elbow type telescope These were definitely establıshed asinstrumenterrors and attributed to incorrect collimation in doweling the telescopes to the instrument frame. Collimation tests later showedanerror of plus 13 m mutes in the direct sighting telescope and minus 6 minutes in the elbow telescope. Since these errors were found to be constant and thus independent of either the angle of altitude or any personal equation of the ohserver, no attempt was made to correct the instrument, but the proper correction factor was applied to each observed angle Ground observation errors in the bubble sextant, due to instrument or constant personal errors, were so small that no attempt wasmade to correctfor them. The results of ground observations with both bubble and ball drop sextants are compiled in Table 1 .

These results were obtaned from a combination of the observations of two observers. All necessary corrections in each case were applied to the observed altatude before computing the error

COMPARISON FLIGHT TESTS OF SEXTANTS

Comparison flight tests of the sextants were made at the Experimental Station, Indianapolis, Indiana during the peilod from July 7 - 16, 1947. Observations were made both during the day and night, although by far the greater number were made on the sun during the day The method adopted was to take a series of observations with one sextant during the first half of the flight and with the other sextant during the latter half of the flight, in order that a comparison might be made under similar conditions. This system was continued during the greater part of the flight tests, although, on several night flights near the end of the tests observations were made with the ball drop sextant exclusively. Bubble sextantobservations were made almost entirely with the averaging device in operation, althougha few single shots were taken. The arplane used was a Douglas C-47, equipped with an astrodome, flying at an air speed of approximately 140 mph . It was necessary to make observations either standing on the deck of the plane or standing on a box when the celestial object could not be sighted without an increase in elevation During the tests the air conditions varied from smooth to medium-rough Some trouble was encountered by clouds intermittently obscuring the sun during the continuous two-minute observing period using the bubble sextant, however, these observations were included along with the others, and the results seemed to indicate that accuracy was not materially 1 m paired by the intermittent clouds

The method used to compute the error of observation closely followed that used in the ground observations Shots were taken when the airplane was over some definite $1-$ dentifiable point whose latitude and longitude could be determined. Knowing the position and time of observation, the correct altitude of the sun or star could be computed. The difference between the computed and observed altitudes gave the observational error All necessary corrections were applied to the

Fig 3 Observational Record, Showing Tilt Scale and Cross Hair Meaning Shots Illustration Enlarged Five Diameters

$F_{1 g} 4$ Ball Drop Sextantin Operation, Showing Eall Drop Unit

Fig 5 Ball Drop Sextant Operated by Observer
observedaltıtude before comparing them with the computed altitudes. Neither a Coriolis correction nor correction for refraction of the astrodome were applied, since the former was considered negligible and the latter was not known.

Twomenalternatedinobserving While one man observed, the other clocked the time of observation, recorded the results, and noted other pertinent data, while the co-pilotsignaled the instant of passage over predetermined observing points. Both observers had had long experience in making celestial and other observations with sextants and other instruments, but neither had had any previous experience with celestial observations from an airplane.

Tabulated herein (Tables II thru X) are records of the observations, listed in chronological order.

COMPARISON OF BALL DROP SEXTANT AND BUBBLE SEXTANT WITH AVERAGING DEVICE

The comparative accuracies of the new ball drop sextant and the Proneer bubble sextant (averaging device used) indicated by the results of the Indianapolis flight tests are given in Table XI, Fig 6 shows curves for each sextantbased on the normal error function The experimental results are indicated by means of circles. Inspection of the curves shows that the error law fits the data quite well in the case of the ball drop sextant, with which 98 observations were made. As would be expected, however, the fit is not as good in the case of the bubble sextant, since the data are based on only 42 observations.

In any event, based on the observed data, the probable error of a single observa-

tion would be 355 minutes for the ball drop sextant and 7.2 minutes for the bubble sextant. These two figures may be considered a fairly concise index of the relative accuracies of the two instruments.

CONCLUSIONS

Sucherrors as occured in the ball drop sextant are, of course, entirely prohibitive and could notbe compensated for by any other advantages, such as speed of observation, rugged construction of the instrument, etc. Actually, while it takes two minutes to make an observation with the $b u b b l e$ sextant and about 10 to 15 seconds with the ball drop sextant the process of averaging the eight shots and the reading of the tilt take another 20 or 30 seconds, so that the time advantage is not
so large as might appear. The only possible conclusion to be reached from the flight tests 15 that the ball drop sextant falls by a great deal of attaining the accuracy necessary for celestial navigation in the air Since two observers were used, and since each attaned far greater accuracy with the bubble sextant than with the ball drop sextant, the lack of accuracymustbe attributed to the instrument itself rather than to the observers. Improvements in this instruinentmight be made to increase the accuracy, but the observations obtained at Indianapolis were so totally unreliable, without any indication of such unreliability being due to some specific flaw in the instrument, that the logical conclusion seems to be that the basic principle of construction is not adaptable to observations in an airplane

TABLE I

GROUND OBSERVATIONS WITH BUBBLE AND BALL DROP SEXTANTS

Bubble Sextant	Ball Drop Sextant Dırect Sight Telescope	Ball Drop Sextant Elbow Telescope
468	231	193
37 min	41 min	35 min
37 min		38 min

No of Observations	468	231	193
Average Error	37 min	41 min	
Total Average Error	37 min		38 min

TABLE II

FIRST FLIGHT

Date
Body
Observer
Instrument.

July 7, 1947
Sun
A M. Weber
Ball Drop Sextant

Telescope Direct sighting
Latıtude $39^{\circ} 43^{\prime} \mathrm{N}$
Longitude $86^{\circ} 21^{\circ} \mathrm{W}$. on all observations
Air Medium rough

Time GCT			Observed		Tilt	Tilt Corr	$\begin{aligned} & \text { Inst } \\ & \text { Corit } \end{aligned}$	Corr		Comp				
			Ob	Alt				Al		Error				
H	M	S			Deg.		Deg	$\begin{gathered} \text { Min } \\ (-) \end{gathered}$	$\begin{gathered} \text { Min } \\ (-) \end{gathered}$	Deg	Min	Deg	Min_{1}	Man
19	27	28	57	21	1	1	13	57	07	63	14	-367		
	30	40	65	34	1	1	13	65	20	62	42	+158		
	34	12	62	49	0	0	13	62	36	62	07	+ 29		
	36	56	60	58	2	4	13	60	41	61	39	- 58		
	41	17	58	15	0	0	13	58	02	60	54	-172		
		35	59	54	2	4	13	59	37	60	32	- 55		
	46	32	57	35	1	1	13	57	21	60	00	-159		
	49	57	59	47	2	4	13	59	30	59	25	+ 05		

Body	Sun
Observer	A M Weber
Instrument	Bubble Sextant,
	averaging device \quadused.

Latıtude	39°	43^{\prime}	N
Longıtude	86°	21^{\prime}	W . on all observations
Air	Medium rough		

$\begin{aligned} & \text { Time } \\ & \text { GCT } \end{aligned}$	Observed Altıtude	Computed Altitude	Error
H M S	Deg Min.	Deg Min	Min
200250	$56 \quad 57$	$57 \quad 07$	-10
1735	5413	5428	-15
2230	5335	$53 \quad 34$	+01
2915	$52 \quad 24$	5219	+05
3635	$50 \quad 48$	5056	-08
4302	$49 \quad 44$	$49 \quad 44$	00

TABLE III

SECOND FLIGHT

Date	July 8, 1947	Telescope	Direct sighting
Body	Sun	A1r	Moderately smooth
Observer	G B, Walker		
Instrument	Ball Drop Sextant		

Time GCT	N Lat		W Long		Obs. Alt		Trilt	Tilt Corr.	Inst. Corr.	Corr Obs Alt		Comp. Alt.		Erior
H M S	Deg	$\mathrm{M}_{1 \mathrm{n}}$	Deg	Min	Deg	Min,	Deg.	Min. (-)	$\begin{gathered} \mathrm{M}_{1 n} \\ (-) \end{gathered}$	De	Min^{\prime}	Deg	Min	Min.
150000	39	49	86	19	51	25	$11 / 2$	2	13	51	10	50	14	+ 56
0200	39	51	86	23	52	20	1	1	13	52	06	50	32	+ 94
0500	39	53	86	32	51	57	0	0	13	51	44	50	58	$+46$
0700	39	56	86	37	53	35	0	0	13	53	22	51	17	+125
0915	39	58	86	43	50	27	I	1	13	50	13	51	46	- 93
1140	40	00	86	48	52	27	1	1	13	52	13	51	59	+ 14
1335	40	03	86	54	50	27	1	1	13	50	13	52	34	-141

Body Sun
Instrument Bubble Sextant, averaging device used
Alr
Moderately smooth

Time GCT	N Lat		W Long		Obs	Alt	Comp	Alt	Error	Observer
H M S	Deg	Min	Deg	Min	Deg	Min	Deg	M1n	Min	
160300	39	53	86	32	61	17	61	20	-03	Weber
0635	39	51	86	23	61	50	62	03	-13	
1300	39	49	86	19	62	52	63	09	-17	
1610	39	52	86	28	63	27	63	32	-05	
1945	39	56	86	37	63	53	63	58	-05	
2220	39	58	86	43	64	07	64	17	-10	
2550	40	03	86	54	64	38	64	40	-02	
3050	40	03	86	54	65	14	65	25	-11	Walker
3520	39	58	86	43	67	27	66	14	+73	
3755	39	56	86	37	66	43	66	42	+01	
4130	39	52	86	28	67	03	67	19	-16	
4430	39	49	86	19	67	29	67	50	-21	

TABLE IV

THIRD FLIGHT

Date	July 11, 1947
Body	Sun
Observer	A M. Weber
Instrument	Ball Drop Sextant

Telescope Elbow type
Alr Moderately rough
Observer A M. Weber Instrument Ball Drop Sextant

Time GCT	N Lat		W Long		$\begin{aligned} & \text { Obs } \\ & \text { Alt } \end{aligned}$		Tilt	$\begin{aligned} & \text { Tilt } \\ & \text { Corr } \end{aligned}$	Inst. Corr	Corr Obs. Alt.		Comp Alt.		Error
H M S	Deg.	Min.	Deg	Min	Deg	Mın	Deg	$\begin{gathered} M_{1 n} \\ (-) \end{gathered}$	$\begin{aligned} & \mathrm{M}_{10} \\ & (+) \end{aligned}$	Deg	Min.	Deg	Min.	$\mathrm{M}_{1 n}$
150212	39	49	86	19	50	33	1	1	5	50	37	50	18	+ 19
0519	39	52	86	28	50	26	1	1	5	50	30	50	47	- 17
0918	39	56	86	37	52	06	0	0	5	52	11	51	24	+ 47
1131	39	58	86	43	52	33	0	0	5	52	38	51	42	+ 56
1337	40	00	86	48	51	30	1	1	5	51	34	52	02	- 28
1555	40	03	86	54	53	15	2	3	5	53	17	52	22	+ 55
2111	40	03	86	54	52	52	1	1	5	52	56	53	20	- 24
2405	40	00	86	48	56	58	1	1	5	57	02	53	35	+207
2720	39	56	86	37	56	52	2	3	5	56	54	54	19	+155
2915	39	53	86	32	54	53	1	1	5	54	57	54	41	+ 16
3242	39	51	86	23	55	41	0	0	5	55	46	55	51	- 05
3810	39	49	86	19	57	30	1	1	5	57	34	56	53	+ 41

Body	Sun
Observer	A.M Weber
Instrument	Bubble Sextant

Time GCT	N. Lat		W Long.		Obs	Alt	Comp	Alt.	Error	Remarks
H M S	Deg.Min		Deg.Min.		Deg.	Min	Deg	Min^{\prime}	Min.	
154945	39	59	86	45	58	28	58	30	-02	Averaging device
5315	40	03	86	54	58	45	59	02	-17	
160015	40	03	86	54	60	10	60	14	-04	
0252	40	00	86	48	60	52	60	45	+07	
0600	39	56	86	37	61	50	61	25	+25	Single shots
0703	39	54	86	34	61	34	61	38	-04	
0747	39	53	86	32	62	02	61	48	+14	
0832	39	52	86	30	61	52	61	56	-04	
0924	39	52	86	28	61	56	62	06	-10	
1101	39	51	86	23	62	26	62	27	-01	
1154	39	50	86	21	63	11	62	36	+35	
1245	39	49	86	19	63	22	62	47	+35	
1643	39	49	86	19	63	19	63	24	-05	Averaging device
2005	39	52	86	28	63	37	63	49	-12	
2400	39	56	86	37	64	10	64	16	-06	
2820	40	00	86	48	64	46	64	48	-02	
3050	40	03	86	54	64	57	65	04	-07	
3655	40	03	86	54	65	59	65	57	+02	
3828	40	00	86	48	66	19	66	15	+04	
4300	39	56	86	37	67	02	67	01	+01	
4625	39	52	86	28	67	30	67	36	-06	

TABLE V

FOURTH FLIGHT

Date	July 11, 1947
Body	Sun
Observer	G B Walker

Body Sun
Observer G.B Walker

TABLE VI

FIFTH FLIGHT

Date	July 14, 1947
Body	Sun
Observer	A.M Weber

Instrument	Ball Drop Sextant
Telescope	Elbow type
Alr	Moderately smooth

Tilt	Tilt Corr.	Inst Corr.	Corr Obs Alt.	Cormp Alt	Error		
Deg	Min. $(-)$	Min $(+)$	Deg.Min	Deg Min	Min		
1	0	5	45	44	45	39	+5
1	0	5	46	14	45	56	+18
1	0	5	45	32	46	14	-42
0	0	5	47	40	46	53	+47
0	0	5	47	34	47	12	+22
1	1	5	47	52	47	37	+15
1	1	5	47	36	48	00	-24
2	2	5	49	11	49	10	+1
0	0	5	50	36	49	37	+59
1	1	5	50	40	50	29	+11
0	0	5	50	52	51	16	-24
1	1	5	52	12	51	59	+13
2	3	5	52	55	52	52	+3
0	0	5	52	28	53	23	-55
2	3	5	53	42	53	44	-2
1	1	5	53	44	54	16	-32
1	1	5	54	20	54	21	-1
1	1	5	54	48	54	43	+5
0	0	5	56	47	55	41	+66
1	1	5	55	30	56	12	-42
2	3	5	55	56	56	38	-42
1	1	5	56	13	57	01	-48
1	1	5	57	21	57	24	-3
1	1	5	58	50	57	46	+64
3	8	5	58	43	58	07	+36
1	1	5	58	19	58	25	-6

Body	Sun
Observer	A M Weber

Time GCT	N. Lat		W		Obs. Alt		Comp	Alt,	Error
H M S	Deg	Mın.	Deg	Min	Deg	Min	Deg	Min^{1}	Min
160705	39	56	86	37	61	01	61	14	-13
1142	40	00	86	48	61	58	61	58	0
1425	40	03	86	54	62	10	62	10	0
2105	40	03	86	54	63	25	63	14	+11
2455	39	58	86	43	64	07	63	58	+ 9
2725	39	53	86	32	64	23	64	30	7
3025	39	52	86	28	64	59	65	00	1

TABLE VII

SIXTH FLIGHT

Date	July 15,1947 GCT
Body	Star Arcturus

Instrument	Ball Drop Sextant
Telescope	Direct sighting
Air	Moderately smooth

Time GCT	$\begin{aligned} & \mathrm{N} \\ & \text { Lat } \end{aligned}$	w Long	Obs Alt	Tilt	Tilt Corr	Inst Corr	Corr Obs Alt		Comp Alt		Error Observer	
H M S	Deg M17	Deg Min	Deg Min	Deg	$\begin{gathered} \text { M1n } \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 n} \\ (-) \end{gathered}$	Deg	Min	Deg	Min	Min	
22709	3933	8622	5725	3	7	13	57	05	57	51	-46	Weber
3415	$39 \quad 24$	8633	5605	1	1	13	55	51	56	51	-60	
3612	3921	8640	5616	1	1	13	56	02	56	37	-35	
3940	$39 \quad 17$	8646	5609	1	1	13	55	55	56	07	-12	
4735	$39 \quad 07$	8659	5409	3	7	13	53	49	54	58	-69	
5158	$39 \quad 07$	8659	5420	1	1	13	54	06	54	11	-05	
5745	$39 \quad 17$	8646	5216	3	6	13	51	57	52	55	-58	Walker
30055	3921	8640	5221	1	1	13	52	07	52	16	-09	
0440	3926	8625	5243	1		13	52	29	51	22	+67	
		8622	50	$21 / 2$		13	50	26	50	43	-17	

TABLE VIII

SEVFNTH FLIGHT

Date July 16, 1947 GCT
Body Star Arcturus

TABLE IX

SUMMARY OF FLIGHT TEST OBSERVATIONS

BALL DROP SEXTANT

Weber

	No. Obs.	Total Error	Av Error	Max Error
		$M_{1 n}$	Min	Min
Direct sighting telescope	27	1875	69.4	367
Elbow telescope	38	1356	35.7	207
Total	65	3231	497	367
	Walker			
		Total	Av_{y}	Max
	No Obs	Error	Error	Error
		Min	Min	Min
Direct sighting telescope	18	1014	56.3	141
Elbow telescope	15	779	51.9	187
Total	33	1793	54.3	187

Total - Both Observers

No Obs	Total Error	Av.	Max
	Min	Min.	Error

Drect sighting telescope	45	2889	64.2	367
Elbow telescope	53	2135	403	207
Grand Total	98	5024	513	367

TABLE X

BUBBLE SEXTANT

	Weber				
	No	Obs	Total Error	Av Error	Max Error
			Min	Min	Min
Averaging Device		33	210	64	17
Single shots		8	128	160	35

Walker

	No. Obs	Total Error	Av Error	Max. Etror
		Min	Min	Min
Averaging Device	9	231	25.7	73
Single shots	6	286	47.7	73

Total - Both Observers				
	No. Obs	Total Error	Av. Error	Max Error
		Min.	Min	Min.
Averaging Device	42	441	10.5	73
Single shots	14	414	29.6	73

TABLE XI
COMPARATIVE ACCURACIES OF THE BALL DROP AND BUBBLE SEXTANTS

