Local Apparent Noon Methods - Part II :
 An exact solution from Culmination to Meridian Passage

FOREWORD

Obtaining within a short time-span one's position from just ONE SINGLE Celestial Body has long been a Holy Grail for a number of Celestial Navigators.

Directly observing the unknown Meridian Passage Time and Height of a single Celestial Body is not achievable with only a Sextant and a Chronometer at sea. Hence Local Apparent Noon Methods - also known as LAN - have resorted to observing and recording a set of heights vs. times surrounding the selected Body local culmination.

All LAN Methods follow 3 successive steps:

Step 1 : Observing \& recording a reasonable number - typically 7 to 15 - of such "parabola type" observations.

Step 2 : Deriving a best fit of these data to "reconstruct" the actual Culmination Time and Height. And finally:

Step 3 : From this Culmination Time and Height obtaining the Moving Observer's Meridian Transit Time and Height of the Celestial Body. Deriving the Observer's Latitude and Longitude has then become an immediate operation.

An abundant literature has already been devoted to many LAN issues. See a list of a few chosen references further down this document. In particular Step 2 has been extensively studied and Navigators now have an ample choice between many different methods to obtain a best estimate for Culmination Time and Height: either statistical computations, or (sometimes very cleverly) hand-drawn sketches, even resorting to a quite clever too "semitransparent folded paper sheet" method, or other ... Its scope being now more than adequately covered in depth it can then be considered that no real breakthrough may or will significantly improve Step 2 from now on.

Two remarks here:

\boldsymbol{a} - With the exception of the very clever and simple Wilson 2 Method (Ref. 5) all "simple" LAN methods involving "manual operations" - e.g. hand-drawn sketches or folding paper sheets - have to perform Step 2 then Step 3 separately and in order. The same holds true for all the statistical methods doing simple "parabola type" regression fits on just the data themselves without any recourse to the Body celestial coordinates. Accordingly once their own Steps 2 are completed all these methods require some mathematical tool to undertake Step 3.
\boldsymbol{b} - More refined statistical methods taking in account the Body Celestial coordinates are believed to internally merge Step 2 and Step 3, in order to directly deliver the Observer's Position at Meridian Passage Time.

Step 3 still needs attention because it could be improved. In particular - and again assuming Culmination Time and Height already secured by Step 2 - from all the publications studied by the Author and to his best knowledge Step 3 has not been specifically documented yet as having been exactly solved mathematically.

This document demonstrates how Step 3 can be solved exactly by the new Iteration Method described here-after.
This Method iterates between 2 Calculus Formulae: one which is well known and its exact $1^{\text {st }}$ order derivative. It assumes all their higher order derivatives to be negligible. Under such assumptions - already applicable to all previous LAN methods - this new method delivers an exact mathematical result and thus entirely solves for Step 3.

PART II

TABLE OF

CONTENTS

- Foreword

- The new iterative Solution and its principle
- Full description of the Iterative Method
- The "historical mathematical tool" deriving UT Meridian Passage from UT Culmination
- Overall Conclusion to Part I and Part II
- Acknowledgements and References
- APPENDIX A : 4 fully worked examples for a non-moving Observer
- APPENDIX B : 4 fully worked examples for a fast moving observer
(1) - Starting Elements - As per §3.2.1 compute the appropriate "starting elements" to derive $h_{00}, \phi_{0}, \mu G_{0}$, and μT_{0}. Assume $T_{00}=0^{\circ}$ and from ϕ_{0} and repeatedly use Formula (2) to compute successively refined values of " T_{i} " until no significant change in their values. Use " T_{i} " last value renamed as " T_{10} " to compute a Preliminary Observer's Position (ϕ_{0}, G_{0}) from which $h_{o o}$ is refined into the required benchmark value " h_{0} ". With all these [updated] Elements, enter the Full Loop.
(2) - Full Loop: (2.1) - Assume $\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{10}$ then again as per $\S 4$ repeatedly use Formula (2) to compute successively refined values of " T_{i} " until no significant change in their values.
(2.2) - Feed Formula (1) with the last obtained " T_{i} " and " ϕ " values to derive a value for " h_{i} " and compare it to the benchmark value " \boldsymbol{h}_{0} ". Update " ϕ_{i} " through a correction equal to exactly $\left(h_{i}-h_{0}\right)$, a quite simple REGULA FALSI working extremely well here, then update " μG_{i} " and " μT_{i} " accordingly.
(2.3) - With these updated elements " ϕ_{i} ", " μG_{i} " and " μT_{i} " perform $\S 4$ again and repeat as necessary until no significant difference between " h_{i} " and " h_{0} ".
(3) - Loop Exit - When last " h_{i} " equals " h_{o} ", the iteration is complete, exit loop. The Observer's position is :

At UT Culmination : Latitude = Last updated value of ϕ_{i} and Longitude $=$ Body GHA $-\left(\right.$ Last updated value of $\left.T_{i}\right)$

FULL DESCRIPTION OF THE ITERATIVE METHOD

All constant quantities displayed as bold characters (e.g. TT-UT, HoE, Temp., QNH, UT culm, H culm). Abbreviations here-after explained as necessary: h_{0} : geocentric height (benchmark value), D° : Body Decl., $\mu D=d D / d U T{ }^{\circ} / h$, RA ${ }^{\circ}$: Body Right Ascension, μ RA = dRA/dUT ${ }^{\circ} / \mathrm{h}, \mathrm{GHA}^{\circ}$: Body Greenwich Hour Angle, $\mu \mathrm{GHA}=\mathrm{dGHA} / \mathrm{dUT}{ }^{\circ} / \mathrm{h}$, $\mu \nu=d G H A \gamma / d U T{ }^{\circ} / h, T^{\circ}$: Body Local Hour Angle, $\mu T=d T / d U T^{\circ} / h,(\phi, G)$: Observer's Latitude \& Longitude, (West Longitudes positive in the course of computations) $\boldsymbol{\mu \phi}=\mathrm{d} \boldsymbol{\phi} / \mathrm{dUT}{ }^{\circ} / \mathrm{h}, \mu \mathrm{G}=\mathrm{dG} / \mathrm{dUT}{ }^{\circ} / \mathrm{h}$, Smg: Speed made good in knots, $\mathbf{C m g}^{\circ}$: Course made good.
IMPORTANT NOTE : We assume here for all variable quantities - i.e. $T, \mu T,(\phi, G)$ and μG - to be sufficiently linear functions of UT over a short time interval (+/-30 min around UT culm).

1 - Height [well known] Formula

(1) : $\sin h=\sin \phi \sin D+\cos \phi \cos D \cos T$ with T being measured from the Observer

2 - Differential equation derived from Formula (1)

$\cos h d h=\cos \phi d \phi \sin D+\sin \phi \cos D d D-\sin \phi d \phi \cos D \cos T-\cos \phi \sin D d D \cos T-\cos \phi \cos D \sin T d T$ $\cos h \neq 0$, and: $\cos h d h=d D(\sin \phi \cos D-\cos \phi \sin D \cos T)+d \phi(\cos \phi \sin D-\sin \phi \cos D \cos T)-\sin T d T \cos \phi \cos D$
(2.0) : $\cos h(d h / d U T)=\mu D / \mu T(\operatorname{tg} \phi-\operatorname{tg} D \cos T)+\mu \phi / \mu T(\operatorname{tg} D-\operatorname{tg} \phi \cos T)-\sin T$. Solving for $d h / d U T=0$ yields :
(2) : $\sin T=\mu D / \mu T(\operatorname{tg} \phi-\operatorname{tg} D \cos T)+\mu \phi / \mu T(\operatorname{tg} D-\operatorname{tg} \phi \cos T)$

With T on both sides, solving (2) requires iteration, greatly simplified here since T remains small, hence $\cos \mathrm{T} \simeq 1$.
3 - Derivation of the Starting Elements for the Iterations i 012345789

3.1-General Formulae

3.1.1- $\mu \phi^{\circ} / \mathrm{h}=(\mathrm{Smg} / 60) \cos \mathrm{Cmg}$,
$3.1 .2-\mu \gamma^{\circ} / \mathrm{h}=15^{\circ} / \mathrm{h} *(366.2422 / 365.2422)=15.04106864 \% / h$

3.2 - Determination of h_{0}

Since the geocentric height " h_{0} " is our benchmark value it needs a most careful determination.

3.2.1 - First approximation and updates on $h_{o}, \phi, \mu \mathrm{G}$ and $\mu \mathrm{T}$

3.2.1.1 - From adequate Software or from the Nautical Almanac obtain the following Celestial data: D, GHA, Parallax/Semi-Diameter, $\mu \mathrm{D}, \mu \mathrm{GHA}$.
3.2.1.2 - Start from the given sextant height and perform standard 2D Tabular Corrections to get a provisional value for h_{0} to be addressed as $h_{o o}$, pending its further refinement into h_{o} in 3.2.1.9.
3.2.1.3 - Assume $\mathrm{T}_{\mathrm{oo}}=0^{\circ}$
3.2.1.4 - Assume regula falsi $\phi_{0}=\mathbf{D}+/-\left(90^{\circ}-h_{00}\right)+$ if Body South $/-$ if Body North .
3.2.1.5 $-\mu \phi=(\mathrm{Smg} / 60) \cos \mathrm{Cmg}$
3.2.1.6- $\mu \mathrm{G}_{0}{ }^{\circ} / \mathrm{h}=-(\mathrm{Smg} / 60) \sin \mathrm{Cmg} / \cos \phi_{0}$
3.2.1.7- $\mu \mathrm{T}_{0}{ }^{\circ} / \mathrm{h}=[\mathrm{d}(\mathrm{GHA} \mu-\mathrm{RA}-\mathrm{G}) / \mathrm{dUT}]_{0}{ }^{\circ} / \mathrm{h}=\left(15.04107-\mu R A-\mu \mathrm{G}_{0}\right)^{\circ} / \mathrm{h}=\left(\mu \mathrm{GHA}-\mu \mathrm{G}_{0}\right)^{\circ} / \mathrm{h}$
3.2.1.8 - Compute T from (2) and with $\mathrm{G}_{0}=\left(\mathrm{GHA}-\mathrm{T}_{10}\right)$ get a $\mathbf{1}^{\text {st }}$ Approximate Position at ($\boldsymbol{\phi}_{0}, \mathrm{G}_{0}$).
3.2.1.9 - From a 3D software compute a better value for h_{o}, e.g. through a Marcq Saint Hilaire intercept/azimuth sight from (ϕ_{0}, G_{0}) to the Celestial Body. Use its resulting geocentric height as the reference / benchmark h_{o}.
3.2.1.10-From h_{0} :
3.2.1.10.1 - As per 3.2.1.4 update ϕ_{0} into regula falsi ϕ_{1}, and :
3.2.1.10.2 - As per 3.2.1.5 update μG_{0} into μG_{1}, and finally :
3.2.1.10.3 - As per 3.2.1.6 update $\mu \mathrm{T}_{0}$ into $\mu \mathrm{T}_{1}$.

4 - Iteration from the starting elements here-above

4.1 - Iteration on T

As per (2) compute:
$\sin T_{11}=\mu \mathrm{D} / \mu \mathrm{T}\left(\operatorname{tg} \phi_{1}-\operatorname{tg} \mathrm{D} \cos \mathrm{T}_{10}\right)+\mu \phi / \mu \mathrm{T}\left(\operatorname{tg} \mathrm{D}-\mathrm{Tg} \phi_{1} \cos \mathrm{~T}_{10}\right)$, and iterate as necessary :
$\sin T_{12}=\mu \mathrm{D} / \mu \mathrm{T}\left(\operatorname{tg} \phi_{1}-\operatorname{tg} \mathrm{D} \cos \mathrm{T}_{11}\right)+\mu \phi / \mu \mathrm{T}\left(\operatorname{tg} \mathrm{D}-\mathrm{Tg} \phi_{1} \cos \mathrm{~T}_{11}\right)$,
$\sin \mathrm{T}_{13}=\mu \mathrm{D} / \mu \mathrm{T}\left(\operatorname{tg} \phi_{1}-\operatorname{tg} \mathrm{D} \cos \mathrm{T}_{12}\right)+\mu \phi / \mu \mathrm{T}\left(\operatorname{tg} \mathrm{D}-\mathrm{Tg} \phi_{1} \cos \mathrm{~T}_{12}\right) . .$. until no significant change in T_{i}
Then make " $T_{20}=$ last value of T_{i} " and use T_{20} as the current best " T " provisional value.

4.2. - Update on ϕ and $\mu \mathrm{T}$

4.2.1 - Then from (1) compute:
$\sin h_{1}=\sin \phi_{1} \sin D+\cos \phi_{1} \cos D \cos T_{20}$, from which we compute h_{1}, then :
regula falsi $\phi_{2}=\phi_{1}+/-\left(h_{1}-h_{0}\right)+$ if Body North $/-$ if Body South
4.2.2 - From 3.2.1.6 update $\mu \mathrm{G}_{1}$ into $\mu \mathrm{G}_{2}$ and from 3.2.7 update $\mu \mathrm{T}_{1}$ into $\mu \mathrm{T}_{2}$

4.3-Back to § 4.1 and restart the iteration

4.3.1 - From $\mathrm{T}_{20}, \phi_{2}$ and $\mu \mathrm{T}_{2}$ get T_{30} then ϕ_{3} and $\mu \mathrm{T}_{3}$. Then as necessary:
4.3.2 - From T_{30}, ϕ_{3} and μT_{3}, get T_{40} then ϕ_{4} and μT_{4}. Then again until no significant change in T_{i} and ϕ_{i}.

$$
\begin{aligned}
& \text { Iteration completed when }\left(h_{i}-h_{0}\right)=0 \text {. } \\
& \text { Checking that "dh/dUT }=0^{\circ} / \mathrm{h} \text { " }
\end{aligned}
$$

Formula (2.0) permits only a trivial check since through Formula (2) the iteration solves for [exactly] dh/dUT = 0 . Independent checks: At the computed UT Meridian Passage check for Body Azimuth lying at [exactly] North or South. Even better: reverse-engineer the heights values and verify that h (UT culmination) reaches an extremum value then.

The Observer's position obtained from the iteration is :
At UT Culmination : LATITUDE culm = Last updated $\phi_{\mathbf{i}}$ and LONGITUDE culm $=$ Body GHA $-\left(\right.$ Last updated $\left.\mathrm{T}_{\mathbf{i}}\right)$
At UT Meridian Passaqe : $\Delta U T_{m p-c}=(U T$ Meridian Passage - UT Culmination $)=$ Last $\left(-T_{i} / \mu T_{i}\right)$

As mentioned here-above a number of LAN Methods are performing Step 2 then Step $\mathbf{3}$ separately.
Once the Culmination Height and Time are known they most often obtain the Meridian Passage Time from the following usual and fairly well-known Formula (3) :
(3.0) : Δ UTmp-c $^{(\text {in seconds of time })}=($ UT Meridian Passage - UT culmination) $s=48 / \pi *(\operatorname{tg} \phi-\operatorname{tg} D)(\mu \phi-\mu D) \quad 1 / h$

Formula (3.0) seems to have been first published in the 1930's - see Ref (1) and (2) - as well as regularly afterwards, - e.g. in Ref (3) and Ref (4) - not to mention its regular publication from the onset in a number of Navigation courses.

Another related formula - almost always ignored - shifts from " h_{0} Culmination" into " h_{0} Meridian Passage" as follows:
(4) : $\left(h_{0} \text { Meridian Passage }-h_{0} \text { Culmination }\right)^{\prime}=-1 / 2 *\left|\left(k \Delta U T_{m p-c}\right) h *(\mu \phi-\mu \mathrm{D})^{\prime} / h\right|$

Important remarks

1 - With $\mu T=d T / d U T=\mu G H A-\mu G$ and its leading coefficient equal to "48/ $\pi^{\prime \prime}$, Formula (3.0) assumes $\mu T=15^{\circ} / h$ which matches the Sun actual μ GHA very well for a steady Observer.

Even for the Sun (when seen from a moving Observer) and most importantly for Lady Moon (always), the coefficient " $48 / \pi$ " needs a multiplicative correction " $k=(15 / \mu \mathrm{T})^{2}$ " in order to more adequately address the effects of μT onto the time difference between Meridian Passage and Culmination.

Accordingly Formula (3.0) should be replaced by the following formula:
(3.1) : $k \Delta U T_{m p-c}($ in seconds of time $)=\left(U T\right.$ Meridian Passage - UT Culmination) $s=(15 / \mu T)^{2} * 48 / \pi *(\operatorname{tg} \phi-\operatorname{tgD})(\mu \phi-\mu D) / / h$

2 - Formula (3.1) nonetheless remains incomplete since it carries only the $1^{\text {st }}$ term of an infinite decreasing series.
1.2.1 - Its neglected $3^{\text {rd }}$ order term - an odd term ranking $2^{\text {nd }}$ in the series - becomes more and more significant with lower and lower culmination heights since the observations need longer and longer timespans to cover a sufficient angular span. Like its higher order odd terms siblings, the $3^{\text {rd }}$ order odd term corrects for the non-symmetrical heights increase/decrease around Cumination Time, an effect quite visible in the further examples involving low Culmination Heights.
1.2.2 - And its neglected $4^{\text {th }}$ order term - an even term ranking $3^{\text {rd }}$ in the series - also starts being significant for values reaching about 10 minutes of time, an effect which is also easily observed in the same examples.

3 - For these reasons mainly, Formula (3) itself is restricted to sufficiently high Culmination Heights. The relevant Literature generally indicates that no LAN Observations should be carried out unless their expected Culmination Heights are to exceed a [very] minimum of 60°. Even in such cases, it should best be replaced by Formula (3.1).

4 - If and when used in conjunction with unfortunately all too often ignored Formula (4) , then Formula (3.1) itself can cope with much softer limitations as shown in the examples further given in APPENDIX A and in APPPENDIX B.

We have seen earlier that the LAN Iteration Method solves exactly for Step 3: first for Culmination then for Meridian Passage. Therefore at the very end of this document we are comparing this LAN Iteration Method - then used as an exact Mathematical solution benchmark - to one of the LAN Methods using Formula (3.1) and Formula (4) hereabove, namely the "Twin Altitude" LAN Method described in APPENDIX A and in APPENDIX B.

1 - All LAN Methods follow the same path: (a) recording "parabolic type" Time and Height data observed around Culmination Time, (b) "extracting" the Culmination Time and Height from them (c) and finally transforming the Culmination Time and Height into Meridian Passage Time and Height in order to easily derive the ensuing Observer's position at Meridian Passage.
1.1 - In all LAN methods the Celestial Body and the moving Observer coordinates are assumed to not depart significantly from strict linear functions of Time.
1.2 - Many LAN Methods have been published to-day and mostly focus on the second part of this operation here-above (b) - and elsewhere referred to as "Step 2" - which can be performed in different ways.

2 - Elsewhere referred to as "Step 3" the shift from Meridian Passage Time to Culmination Time here-above (c) has long been carried out through Formula (3.0).
(3.0) : Δ UTmp-c (in seconds of time) $=($ UT Meridian Passage - UT culmination) $s=48 / \pi *(\operatorname{tg} \phi-\operatorname{tgD})(\mu \phi-\mu \mathrm{D}) / / h$
2.1 - Formula (3.0) should be best replaced by Formula (3.1). This is rarely documented in the relevant literature.
(3.1) : $k \Delta U T m p-c$ (in seconds of time) $=\left(\right.$ UT Meridian Passage - UT Culmination) $s=(15 / \mu T)^{2} * 48 / \pi *(\operatorname{tg} \phi-\operatorname{tgD})(\mu \phi-\mu D) / / h$
2.2 - Unfortunately also the counterpart formula for the Heights themselves - i.e. Formula (4) - is almost never carried out or even published in spite of its sometimes quite significant contribution.

$$
\text { (4) : }\left(h_{0} \text { Meridian Passage }-h_{0} \text { Culmination }\right)^{\prime}=-1 / 2 *\left|\left(k \Delta U T_{m p-c}\right)^{*} *(\mu \phi-\mu D)^{\prime / h}\right|
$$

2.3 - These both omissions are kind of unfortunate since both Formula (3.1) and Formula (4) when used together carry much softer limitations of use than the early initial and sole Formula (3) restricted to only Culmination heights superior to 60°.

3 - The LAN Iteration Method described here solves for Step 3 only. From both the given Culmination Time and Culmination Height it directly yields the "mathematically exact" Observer's Position at the Culmination Time itself.
3.1 - It is interesting to see how wonderfully its internal simple regula falsi (or "false position") works.
3.2 - As regards the expected final position - and still assuming for this Method the usual linearity assumptions already applicable to all the others - it converges quite well. It stays free of all the explicit or implicit mathematical shortcomings / limitations inherent to all previously documented LAN Methods. It therefore comes as a welcome addition to the LAN Methods Family.

4 - Since it has recourse to Formula (3.0), the Twin Altitude LAN Method has been retained for the examples given in APPENDIX A and APPENDIX B. It actually uses here both Formula (3.1) and Formula (4) together. Accordingly it behaves very well within the usual 60° operational limitation generally accepted for Formula (3.0) when used alone. Even outside this 60° limitation, the Twin Altitude LAN Method also behaves reasonably well, and in all cases much better than if it were relying onto Formula (3) only.

5 - Most LAN methods - if not all of them - remain sufficiently robust against noisy data.

Given the noise-free data in all the examples given here, the Culmination Heights are always obtained with no error.
In a noisy data environment and on the average the E-W distances errors will be up to 3 to 5 times greater (or even more) than the N-S distance errors. In other words:

In all LAN Methods, the Position uncertainties always stay (far) more important for Longitudes than for Latitudes.

6 - We should not forget about the following rule of thumb gained from experience:

Always arrange for a minimum difference of 30^{\prime}, and never less than 20',
 between the extreme values of the heights surrounding Culmination.

Lack of so doing may start significantly weakening the reliability of the Longitudes obtained by any LAN Method.

7 - Not an immediately related topic now ... but:

Often overlooked but unfortunately true: the MOON HEIGHTS pencil corrections keep requiring meticulous care. The French Éphémérides Nautiques and the Nautical Almanac (2D) Tables deliver similar ones, almost always within 0.1 ' from one another. Nonetheless the resulting geocentric heights " $h_{o o}$ " may differ by up to 0.3 ' from the "true" values " h_{0} " computed through 3D Methods. It is an inherent limitation of such Tables.

8 - Back to LAN's ... if asked for a personal choice between the many LAN Methods available:
8.1 - For a "hand drawn sketch" LAN Method, I would choose the wonderful Wilson 2 LAN Method - Ref (5) - which does not even need to compute (UT Meridian Passage - UT culmination) as it immediately jumps to the Meridian Passage.
8.2 - For securing the best results from any given set of data I have eventually come to the conclusion that statistical methods almost always remain the most reliable and accurate ones.

So ... in that case, I am going for the $6^{\text {th }}$ Order LAN Method :

- Its useful time-span around Culmination covers about twice the time-span of the classical $2^{\text {nd }}$ order methods. Even if it is not mathematically exact since it lets all higher order terms aside, it behaves quite well.
- It copes adequately with quite noisy data and under most conditions it also generally computes with remarkable accuracy the quantity (UT Meridian Passage - UT Culmination).
- And it has always faithfully stayed afloat in all and any configurations experienced or simulated until now.

ACKNOWLEDGMENTS AND REFERENCES

(1) - HAUTEURS CIRCUMZÉNITHALES CORRESPONDANTES, by Imprimerie de l'École Navale (1934)
(2) - ADMIRALTY NAVIGATION MANUAL (near page 152), by HM Stationary Office, Vol III (1938)
(3) - CALCULATOR NAVIGATION by Mortimer Rogoff, by NORTON Publishers, ISBN 0-393-03192-6 (May 1979)
(4) - POSITION FROM OBSERVATION OF A SINGLE BODY, by James N. Wilson in Journal of the Institute of Navigation, V. 32 N. 1 (Spring 1985)
(5) - THE NOON FIX, by James N. Wilson, by AUTHOR HOUSE Bloomington IN, ISBN 978-1-4389-5866 (sc) (25 March 2009)
(6) - NAVLIST FORUM ARTICLE by Frank E. Reed http://fer3.com/arc/m2.aspx/Latitude-Longitude-Noon-Sun-FrankReed-jun-2005-w24178 at https://navlist.net/ . Note: This Article describes F.E. Reed's full "Folded Paper Method" which advocates pre-treating data as described here in Section 4.0. A simpler version without pre-treatment is described and demonstrated here with excellent end-results believed to be identical.
(7) - 210915 - LATITUDE LONGITUDE NEAR NOON METHODS COMPARISON, by Antoine M. Couëtte as Attachment
https://navlist.net/imgx/210908-Latitude-Longitude-Near-Noon-methods-comparison-.pdf to a NAVLIST FORUM ARTICLE by Antoine M. Couëtte https://navlist.net/Compare-Methods-LatLon-Near-Noon-Couëtte-sep-2021-g51145, both currently at https://navlist.net/ .
(8) - 231203 - STEADY OBSERVER POSITION FROM H CULM AND UT CULM, by Antoine M. Couëtte as Attachment https://navlist.net/imgx/Steady-Observer-position-from-H-culm-and-UT-culm-.pdf to a NAVLIST FORUM ARTICLE by Antoine M. Couëtte https://navlist.net/Non-moving-Observer-position-from-H-culm-UT-culm-Couëtte-dec-2023-q55034 , both currently at https://navlist.net/ .

APPENDIX A - NON MOVING OBSERVER

In APPENDIX A and APPENDIX B of this document we are comparing the LAN Iteration Method with a LAN Method using both Formula (3.1) here-above and the Formula (4) here-after, namely the "Twin Altitude" Method.

This "Twin Altitude Method" also referred to as the "Double/Equal/Iso Altitude Method" involves taking and recording the times of the very same pre-set altitudes before and after Culmination.

- The Culmination Time is taken as the averaged value of all such Observations. And:
- The Culmination Height is taken separately without recording its time.

The Meridian Passage Time is obtained from the Culmination Time through Formula (3.1).
The Meridian Passage Height is computed from the Culmination Height through the following formula:
(4) $h_{o o M p}=h_{o o C u l m}-0.5\left|(\mu \phi-\mu D) k \Delta U T_{m p-c}\right|$

And for historical reference:

The following Twin Altitude LAN rules were published for the French Navy in 1934 - Ref (1) :
(1) - Attempt using only h Culm's higher than 80°, but do not use h Culm's lower than 60°.
(2) - Carefully prepare the Observations, e.g. for 3 sets of heights observe as per the following schedule :

h Culm range	$89^{\circ}-88^{\circ}$	$88^{\circ}-86^{\circ} 86^{\circ}-84^{\circ} 84^{\circ}-82^{\circ}$	$82^{\circ}-80^{\circ}$		
Start observations ahead of best LAN estimate by:	6 minutes	7 min.	9 min.	11 min.	13 min.
Increase (decrease) successive Sextant heights by:	7^{\prime}	5^{\prime}	4^{\prime}	3^{\prime}	3^{\prime}
Stop observations ahead of best LAN estimate by:	2 minutes	3 min.	5 min.	7 min.	9 min.

The following examples processing noise-free data obtained through reverse-engineering all involve one same Moon LAN Culmination Time and the same Upper Limb: one observed at 31° and one observed at 81°, one from a North Culmination position and one from a South Culmination position, and finally one from a steady Observer and one from a high speed moving Observer, which altogether makes 8 different configurations.

With the LAN Iteration Method used as a benchmark, each of these 8 examples is solved by both:

- The Twin Altitude LAN Method using as benchmark height the Nautical Almanac corrected UL Heights.
- A $\boldsymbol{6}^{\text {th }}$ order LAN Method using as benchmark height the more accurate 3D corrected same UL Heights differing by about 0.25 from their NA corrected counterparts.

The performance of each LAN Method is checked for both:

- "STEP 2" PERFORMANCE :

How do UTCulm and hculm obtained by each method compare to the "reference" initial values.

- "STEP 3" and then OVERALL END POSITION PERFORMANCE :

How do the End Positions derived by each method compare to the "true" End Position obtained by the LAN Iteration Method.

Last note: Many non-significant decimals published throughout for computation performance checks only.

Example A1 : NON-MOVING Observer, Southerly Culmination with UL $\mathbf{h}=31^{\circ}$

From https://navlist.net/Weird-moonrise-direction-Ritchie-nov-2023-g55024 :

```
A1-23 Nov 2023 , TT-UT = + 69.2s, HoE = 15', Temperature = 50
    Southerly Moon Culminating at UL h = 31'09.2' seen from a non-moving Observer.
```

NOTE : The following steps refer to the identically numbered earlier precepts

A1-3.2.1.1 - From own Software accurate to +/-4", get for the Moon:

GHA $=149^{\circ} 16.54^{\prime}, \mu R A=0.5205^{\circ} / h, \mu G H A=\mu T=14.52061^{\circ} / h, D e c=+1^{\circ} 39.17^{\prime}, \mu D=0.2790^{\circ} / h$, Parallax=59.20'
NOTE : Since the Observer is not moving, $\mu \phi=0^{\circ} / \mathrm{h}$ and $\mu \mathrm{G}=0^{\circ} / \mathrm{h}$

A1-3.2.1.2 - From the Éphémérides Nautiques (2D) Tables, let's perform a preliminary estimate of $\mathbf{h}_{\mathbf{0}}$:
Dip =-3.7' , LL Correction (-Refraction, + Parallax + SD $)=+65.2^{\prime}$, UL D Correction $=-32.2^{\prime}$
Total Correction $=+33.0^{\prime}$, hence h_{0} provisional value : $\mathbf{h o n}_{\mathbf{0 0}}=31^{\circ} 38.5^{\prime}$

A1-3.2.1.4 - From $h_{o o}$ get regula falsi $\phi_{0}=D+\left(90^{\circ}-h_{00}\right)=60^{\circ} 00.67^{\prime}$, i.e. a Northerly Latitude

A1-3.2.1.8 - From $\mathrm{T}_{00}=0^{\circ}, \phi_{0}=60^{\circ} 00.67^{\prime}$ and $\mu \mathrm{T}=14.52061^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{01}=1.87589^{\circ}, \mathrm{T}_{02}=1.87591^{\circ}$, $\mathrm{T}_{03}=1.87591^{\circ}$, hence $\mathrm{T}_{10}=1.87591^{\circ}$.
With $\mathrm{G}_{0}=\left(\mathrm{GHA}-\mathrm{T}_{10}\right)$ get : Observer's $1^{\text {st }}$ Approximate Position at ($\phi_{0}=60^{\circ} 00.67^{\prime}, \mathrm{G}_{0}=147^{\circ} 23.99^{\prime}$)

A1-3.2.1.9 - Through a Marcq Saint Hilaire Line of Position yielding +0.8 NM / 182.2°, the 3D correction onto Moon UL height gives $\mathbf{h}_{\mathbf{0}}=\mathbf{3 1}{ }^{\circ} \mathbf{3 8 . 1 8}$, (vs. earlier $31^{\circ} 38.5^{\prime}$) to be kept from now on. From $\mathbf{h}_{\mathbf{0}}=31^{\circ} \mathbf{3 8 . 1 8}{ }^{\prime}$:

A 3.2.1.10.1 - As per 3.2.1.4 update $\phi_{0}=60^{\circ} 00.67^{\prime}$ into regula falsi $\phi_{1}=60^{\circ} 00.99^{\prime}$

A1-4.1-First Iteration on T

With $\mathrm{T}_{10}=1.87591^{\circ}, \phi_{1}=60^{\circ} 00.99^{\prime}$ and $\mu \mathrm{T}=14.52061^{\circ} / \mathrm{h}$ from (2) get $\mathrm{T}_{11}=1.87632^{\circ}, \mathrm{T}_{12}=1.87632^{\circ}$, hence $\mathrm{T}_{20}=1.87632^{\circ}$

A1-4.2-First Update on ϕ

A1-4.2.1 - With $T_{20}=1.87632^{\circ}$, from (1) get : $h_{1}=31^{\circ} 37.10^{\prime}$ and $\left(h_{1}-h_{0}\right)=31^{\circ} 37.10^{\prime}-31^{\circ} 38.18^{\prime}=-1.08^{\prime}$ With $\left(h_{1}-h_{0}\right)=-1.08^{\prime}$, we need to decrease ϕ_{1} in order to bring h_{2} (next in § A 4.4) closer to h_{0} Hence regula falsi $\phi_{2}=\phi_{1}+\left(h_{1}-h_{0}\right)=60^{\circ} 00.98^{\prime}-\left(-1.08^{\prime}\right)=59^{\circ} 59.91^{\prime}$

A1-4.3-Second iteration on T

With $T_{20}=1.87631^{\circ}, \phi_{1}=59^{\circ} 59.90^{\prime}$, from (2) get $\mathrm{T}_{21}=1.87493^{\circ}, \mathrm{T}_{22}=1.87493^{\circ}$, hence $\mathrm{T}_{30}=1.87493^{\circ}$

A1-4.4-Second Update on ϕ

With $T_{30}=1.87493^{\circ}$, from (1) get : $h_{2}=31^{\circ} 38.18^{\prime}$. Since $\left(h_{2}-h_{0}\right)=0.00^{\prime}$, our iteration is then complete.
 FINAL POSITION OBTAINED BY THE ITERATION METHOD
Observer's position at UT culmination: 06h19m44.0s / N 595 59.91' / W 147²4.04'
vs. Author's Position at UT culmination : 06h19m44s / N 6000.0' / W147º24.0'
$\Delta U T_{m p-c}=$ UT Meridian passage - UT Culmination $=-7 \mathrm{~m} 44.8 \mathrm{~s}$ (vs. Author's result at -7 m 45 s UT) Observer's position at UT Meridian passage : 06h11m59.2s / N 59º 59.91' / W 147²4.04'
vs. Author's Position at UT Meridian passage : 06h11m59s / N $60^{\circ} 00.0^{\prime} / \mathrm{W} 147^{\circ} 24.0^{\prime}$
Quick Check : At 06h11m59.2s MOON height UL $=31^{\circ} 08.107^{\prime}, A z=180.00010^{\circ}$: quick check OK

A1 - Data for Twin-altitude LAN Method
Difference between extreme heights: 17.9’

	6		$31^{\circ} 09.2^{\prime}$	
$06: 19: 30.0$				
	UT	UL Heights 2		UT
5	$06: 00: 07.0$	$31^{\circ} 02.2^{\prime}$	7	$06: 39: 20.5$
4	$05: 57: 09.0$	$30^{\circ} 59.9^{\prime}$	8	$06: 42: 23.0$
3	$05: 54: 11.5$	$30^{\circ} 57.4^{\prime}$	9	$06: 45: 18.0$
2	$05: 51: 14.0$	$30^{\circ} 54.5^{\prime}$	10	$06: 48: 18.0$
1	$05: 48: 17.5$	$30^{\circ} 51.3^{\prime}$	11	$06: 51: 10.5$

A1 - Position by the Twin-altitude LAN Method with a corrective factor applied to both $\Delta U T_{m p-c}$

$$
\text { and }-\mu \phi \Delta U T m p-c: \text { " } k \text { " }=(15 / \mu T)^{2}=1.0671
$$

$$
D \simeq+1^{\circ} 39^{\prime} \mu D=+16.7^{\prime} / h \phi \simeq 60^{\circ} 00^{\prime} \mu \phi=0^{\prime} / h
$$

$$
\mu \mathrm{T}=14.521^{\circ} / \mathrm{h} \Delta \mathrm{UTmp-c}=-7 \mathrm{~m} 15 \mathrm{~s}
$$

$$
-0.5\left|(\mu \phi-\mu \mathrm{D}) \Delta U T_{m p-c}\right|=-1.0^{\prime}
$$

UTculm $=06: 19: 45 \quad k \Delta U T m p-c=-7 m 44 s$
UTmp $=06: 12: 01 \quad-0.5\left|(\mu \phi-\mu \mathrm{D}) k \Delta \mathrm{U}_{\mathrm{mp}}-\mathrm{c}\right|=-1.1^{\prime}$
hULculm $=31^{\circ} 09.2^{\prime} h_{\text {ooculm }}=31^{\circ} 38.5^{\prime} h_{\text {oomp }}=31^{\circ} 37.4^{\prime}$
Position at UTmp : N $59^{\circ} 59.6^{\prime} / \mathrm{W} 147^{\circ} 24.5^{\prime}$
"STEP 2" PERFORMANCE :
Error in UT Culm : 1 s Error in H culm : 0.0' "STEP 3 " and OVERALL POSITION PERFORMANCE

Error in k Δ UTmp-c : 0.8 s
When using " k " : Position Error $=0.4$ NM When not using " k " : Position Error $=3.7$ NM

A1 - Data for other LAN Methods
Difference between extreme heights: 22.4'

	UT	UL Heights		UT	UL Heights
1	05:45:00.0	3047.4'	10	06:30:00.0	31 ${ }^{\circ} 07.3^{\prime}$
2	05:50:00.0	3053.2'	11	06:35:00.0	$31^{\circ} 05.0^{\prime}$
3	05:55:00.0	30 ${ }^{\circ} 58.1{ }^{\prime}$	12	06:40:00.0	$31^{\circ} 01.8^{\prime}$
4	06:00:00.0	31 ${ }^{\circ} 02.1^{\prime}$	13	06:45:00.0	3057.7'
5	06:05:00.0	31 ${ }^{\circ} 05.3^{\prime}$	14	06:50:00.0	30 ${ }^{\circ} 52.6^{\prime}$
6	06:10:00.0	31 ${ }^{\circ} 07.5^{\prime}$	15	06:55:00.0	$30^{\circ} 46.8^{\prime}$
7	06:15:00.0	31 ${ }^{\circ} 08.8^{\prime}$	16		
8	06:20:00.0	31 ${ }^{\circ} 09.2^{\prime}$	17		
9	06:25:00.0	$31^{\circ} 08.7$	18		

A1 - Position by a $6^{\text {th }}$ order LAN method
UTculm $=6 \mathrm{~h} 19 \mathrm{~m} 44.1 \mathrm{~s} \Delta \mathrm{UTmp}_{\mathrm{m}}^{\mathrm{c}}=-7 \mathrm{~m} 45.0 \mathrm{~s}$
Position : UTmp $=6 \mathrm{~h} 11 \mathrm{~m} 59.1 \mathrm{~s} / \mathrm{N} 59^{\circ} 59.8^{\prime} / \mathrm{W} 147^{\circ} 24.0^{\prime}$ SDEV=0.0 NM , Valid interval width +/-1h24m @ UTculm , i.e. Valid Observation time span: (04:55-07:44) $\varepsilon \mathrm{T}^{\prime} / \varepsilon h^{\prime} \leq 5.0$ Longitude Error Uncertainty $(1 \sigma)=0.1^{\prime}$
"STEP 2" PERFORMANCE :
Error in UT Culm : 0.1 s Error in H culm : $0 . \mathbf{0}^{\prime}$
"STEP 3 " and OVERALL POSITION PERFORMANCE Error in $\Delta U T \mathrm{mp}-\mathrm{c}:-0.2 \mathrm{~s}$

Actual Position Error : 0.1 NM

A2-23 Nov 2023 , TT-UT $=+69.2 \mathrm{~s}, \mathrm{HoE}=15^{\prime}$, Temperature $=50^{\circ} \mathrm{F}$, QFE $=29.83^{\prime \prime}$, UT culm = 06:19:44, Northerly Moon Culminating at $\mathrm{UL} \mathrm{h}=31^{\circ} 09.2^{\prime}$ seen from a non-moving Observer.

NOTE : The following steps refer to the identically numbered earlier precepts

A2-3.2.1.1 - From own Software accurate to +/-4", get for the Moon:
$G H A=149^{\circ} 16.54^{\prime}, \mu R A=0.5205^{\circ} / h, \mu G H A=\mu T=14.52061^{\circ} / h, D e c=+1^{\circ} 39.17^{\prime}, \mu D=0.2790^{\circ} / h$, Parallax=59.20
NOTE : Since the Observer is not moving, $\mu \phi=0^{\circ} / \mathrm{h}$ and $\mu \mathrm{G}=0^{\circ} / \mathrm{h}$
A2-3.2.1.2 - From the Éphémérides Nautiques (2D) Tables, let's perform a preliminary estimate of $\mathbf{h}_{\mathbf{0}}$:
Dip =-3.7', LL Correction (-Refraction, +Parallax + SD $)=+65.2^{\prime}$, UL D Correction $=-32.2^{\prime}$
Total Correction $=+33.0^{\prime}$, hence h_{0} provisional value $: h_{00}=31^{\circ} 38.5^{\prime}$
A2-3.2.1.4-From h_{00} get regula falsi $\phi_{0}=D+\left(90^{\circ}-h_{00}\right)=-56^{\circ} 42.33^{\prime}$, i.e. a Southerly Latitude
A2-3.2.1.8 - From $T_{00}=0^{\circ}, \phi_{0}=56^{\circ} 42.33^{\prime}$ and $\mu \mathrm{T}=14.52061^{\circ} / \mathrm{h}$ from (2) get $\mathrm{T}_{01}=-1.70801^{\circ}, \mathrm{T}_{02}=-1.70800^{\circ}$, $\mathrm{T}_{03}=-1.70800^{\circ}$, hence $\mathrm{T}_{10}=-1.70800^{\circ}$.
With $\mathrm{G}_{0}=\left(\mathrm{GHA}-\mathrm{T}_{10}\right)$ get : Observer's $1^{\text {st }}$ Approximate Position at ($\phi_{0}=-56^{\circ} 42.33^{\prime}, \mathrm{G}_{0}=150^{\circ} 59.02^{\prime}$)
A2-3.2.1.9 - Through a Marcq Saint Hilaire Line of Position yielding $+0.7 \mathrm{NM} / 002.0^{\circ}$, the 3D correction onto Moon UL height gives $\mathbf{h}_{\mathbf{0}}=31^{\circ} \mathbf{3 8 . 1 8} \mathbf{\prime}^{\prime}$, (vs. earlier $31^{\circ} 38.5^{\prime}$) to be kept from now on. From $h_{0}=31^{\circ} \mathbf{3 8 . 1 8}{ }^{\prime}$:

A2-3.2.1.10.1 - As per 3.2.1.4 update $\phi_{0}=-56^{\circ} 42.33^{\prime}$ into regula falsi $\phi_{1}=-56^{\circ} 42.65^{\prime}$

A2-4.1-First Iteration on T

With $T_{10}=-1.70800^{\circ}, \phi_{1}=-56^{\circ} 42.65^{\prime}$ and $\mu \mathrm{T}=14.52061^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{11}=-1.70834^{\circ}, \mathrm{T}_{12}=-1.70834^{\circ}$ hence $\mathrm{T}_{20}=-1.70834^{\circ}$

A2-4.2-First Update on ϕ

A2-4.2.1 - With $T_{20}=-1.70834^{\circ}$, from (1) get : $h_{1}=31^{\circ} 37.20^{\prime}$ and ($h_{1}-h_{0}$) $=31^{\circ} 37.20^{\prime}-31^{\circ} 38.19^{\prime}=-0.98^{\prime}$ With $\left(h_{1}-h_{0}\right)=-0.98^{\prime}$, we need to increase ϕ_{1} in order to bring h_{2} (next in § A 4.4) closer to h_{0} Hence regula falsi $\phi_{2}=\phi_{1}-\left(h_{1}-h_{0}\right)=-56^{\circ} 42.65^{\prime}-\left(-0.98^{\prime}\right)=56^{\circ} 41.67^{\prime}$

A2-4.3-Second iteration on T

With $T_{20}=-1.70833^{\circ}, \phi_{1}=-56^{\circ} 41.67^{\prime}$, from (2) get $T_{21}=-1.70729^{\circ}, T_{22}=-1.70729^{\circ}$, hence $T_{30}=-1.70729^{\circ}$

A2-4.4-Second Update on ϕ

With $T_{30}=-1.70728^{\circ}$, from (1) get : $h_{2}=31^{\circ} 38.18^{\prime}$. Since $\left(h_{2}-h_{0}\right)=0.00^{\prime}$, our iteration is then complete.

EXAMPLE A2-23 Nov 2023, UT culm = 06:19:44 Northerly Moon UL $=31^{\circ} 09.2^{\prime} \mathrm{Cmg} / \mathrm{Smg}=153^{\circ} / 0 \mathrm{kts}$ FINAL POSITION OBTAINED BY THE ITERATION METHOD
Observer's position at given UT culmination 06h19m44.0s : S 5641.67' / W 15058.98'
$\Delta U T_{m p-c}=$ UT Meridian passage - UT culmination $=+7 \mathrm{m03.3s}$
Observer's position at UT Meridian passage: 06h26m47.3s / S 5641.67' $\mathrm{W} 150^{\circ} 58.98^{\prime}$
Quick Check: At 06h26m47.3s MOON height UL $=31^{\circ} 08.205^{\prime}, A z=0.00011^{\circ}$: quick check OK

A2 - Data for Twin-altitude LAN Method Difference between extreme heights: 30.7^{\prime}				
	6	$31^{\circ} 09.2^{\prime}$		$06: 20: 00.0$
	UT	UL Heights		UT
5	$05: 50: 53.5$	$30^{\circ} 52.7^{\prime}$	7	$06: 48: 33.0$
4	$05: 48: 17.0$	$30^{\circ} 49.6^{\prime}$	8	$06: 51: 06.0$
3	$05: 45: 43.0$	$30^{\circ} 46.3^{\prime}$	9	$06: 53: 40.0$
2	$05: 43: 17.5$	$30^{\circ} 42.9^{\prime}$	10	$06: 56: 07.5$
1	$05: 40: 22.0$	$30^{\circ} 38.5^{\prime}$	11	$06: 59: 02.0$

A2 - Position by the Twin-altitude LAN Method
with a corrective factor applied to both $\Delta U T_{m p-c}$
and $-\mu \phi \Delta U T m p-c: ~ " ~ k "=(15 / \mu \mathrm{T})^{2}=1.0671$
$D \simeq+1^{\circ} 39^{\prime} \mu D=+16.7^{\prime} / h \phi \simeq-56^{\circ} 30^{\prime} \mu \phi=0^{\prime} / h$

$$
\begin{gathered}
\mu \mathrm{T}=14.521^{\circ} / \mathrm{h} \Delta \mathrm{UTmp-c=+6m33s} \\
-0.5|(\mu \phi-\mu \mathrm{D}) \Delta U T m p-\mathrm{c}|=-0.9^{\prime}
\end{gathered}
$$

UTculm $=06: 19: 42 \quad k \Delta U T m p-c=+6 m 59 s$
UTmp $=06: 26: 41 \quad-0.5\left|(\mu \phi-\mu \mathrm{D}) k \Delta \mathrm{UT}_{m p-\mathrm{c}}\right|=-1.0^{\prime}$
hULculm $=31^{\circ} 09.2^{\prime} h_{\text {ooculm }}=31^{\circ} 38.5^{\prime} h_{00 m p}=31^{\circ} 37.5^{\prime}$
Position at UTmp : S $56^{\circ} 41.4^{\prime} / \mathrm{W} 150^{\circ} 57.5^{\prime}$
"STEP 2" PERFORMANCE :
Error in UT Culm : -2 s Error in H culm : 0.0' "STEP 3 " and OVERALL POSITION PERFORMANCE

Error in k Δ UTmp-c : -4.3 s
When using " k " : Position Error $=0.9$ NM
When not using " k " : Position Error = 4.3 NM

Difference between extreme heights : 30.7'

	UT	UL Heights		UT	UL Heights
1	05:40:22.0	30³8.5'	10	06:56:07.5	3042.9'
2	05:43:17.5	30 ${ }^{\circ} 42.9^{\prime}$	11	06:59:02.0	30³8.5'
3	05:45:43.0	3046.3'	12	This example carries the same data as the Twin-Altitude Lan Method running on the left side of this page	
4	05:48:17.0	3049.6'	13		
5	05:50:53.5	3052.7'	14		
6	06:20:00.0	31 ${ }^{\circ} 09.2^{\prime}$	15		
7	06:48:33.0	30 ${ }^{\circ} 52.7{ }^{\prime}$	16		
8	06:51:06.0	3049.6'	17		
9	06:53:40.0	30 ${ }^{\circ} 46.3$	18		

A2 - Position by a $6^{\text {th }}$ order LAN Method
UTculm $=6 \mathrm{~h} 19 \mathrm{~m} 43.6 \mathrm{~s} \Delta \mathrm{UTmp}-\mathrm{c}=+7 \mathrm{m03.4s}$
Position : UTmp $=6 \mathrm{~h} 26 \mathrm{~m} 47.0 \mathrm{~s} / \mathrm{N} 56^{\circ} 41.6^{\prime} / \mathrm{W} 150^{\circ} 58.9^{\prime}$ SDEV=0.0 NM , Valid interval width +/-1h21m @ UTculm , i.e. Valid Observation time span: (04:52-07:40) $\varepsilon \mathrm{T}^{\prime} / \varepsilon h^{\prime} \leq 4.7$

Longitude Error Uncertainty $(1 \sigma)=0.1^{\prime}$
"STEP 2" PERFORMANCE :
Error in UT Culm : 0.4 s Error in H culm : $0 . \mathbf{0}^{\prime}$
"STEP 3" and OVERALL POSITION PERFORMANCE
Error in \triangle UTmp-c: -0.1 s
Actual Position Error : 0.1 NM

Example A3 : NON-MOVING Observer, Southerly Culmination with UL $\mathbf{h}=81^{\circ}$

A3-23 Nov 2023 , TT-UT = + 69.2s, HoE = 15', Temperature = 50 Southerly Moon Culminating at UL $\mathrm{h}=81^{\circ} 09.2^{\prime}$ seen from a non-moving Observer.

NOTE : The following steps refer to the identically numbered earlier precepts

A3-3.2.1.1 - From own Software accurate to +/-4", get for the Moon:
$G H A=149^{\circ} 16.54^{\prime}, \mu R A=0.5205^{\circ} / \mathrm{h}, \mu \mathrm{GHA}=\mu \mathrm{T}=14.52061^{\circ} / \mathrm{h}, \mathrm{Dec}=+1^{\circ} 39.17^{\prime}, \mu \mathrm{D}=0.2790^{\circ} / \mathrm{h}$, Parallax=59.20${ }^{\prime}$

NOTE : Since the Observer is not moving, $\mu \phi=0^{\circ} / \mathrm{h}$ and $\mu \mathrm{G}=0^{\circ} / \mathrm{h}$

A3-3.2.1.2 - From the Éphémérides Nautiques (2D) Tables, let's perform a preliminary estimate of $\mathbf{h}_{\mathbf{0}}$:
Dip =-3.7', LL Correction (-Refraction, +Parallax + SD $)=+25.3^{\prime}$, UL D Correction $=-32.3^{\prime}$
Total Correction $=-10.7^{\prime}$ hence h_{0} provisional value $: h_{00}=80^{\circ} 58.5^{\prime}$

A3-3.2.1.4-From $h_{o o}$ get regula falsi $\phi_{0}=D+\left(90^{\circ}-h_{00}\right)=10^{\circ} 40.67^{\prime}$, i.e. a Northerly Latitude

A3-3.2.1.8 - From $T_{00}=0^{\circ}$ and $\phi_{0}=10^{\circ} 40.67^{\prime}$ from (2) get $T_{01}=0.17578^{\circ}, T_{02}=0.17578^{\circ}$, hence $T_{10}=0.17578^{\circ}$. With $\mathrm{G}_{0}=\left(\mathrm{GHA}-\mathrm{T}_{10}\right)$ get : Observer's $1^{\text {st }}$ Approximate Position at ($\phi_{0}=10^{\circ} 40.67^{\prime}, \mathrm{G}_{0}=149^{\circ} 05.99^{\prime}$)

A3-3.2.1.9 - Through a Marcq Saint Hilaire Line of Position yielding -0.2 NM /181.1 ${ }^{\circ}$, the 3D correction onto Moon UL height gives $\mathbf{h}_{\mathbf{0}}=\mathbf{8 0}^{\circ} \mathbf{5 8 . 2 3 ^ { \prime }}$, (vs. earlier $81^{\circ} 58.5^{\prime}$) to be kept from now on. From $\mathbf{h}_{\mathbf{0}}=\mathbf{8 0}^{\circ} \mathbf{5 8 . 2 3}{ }^{\prime}$:

A3-3.2.1.10.1 - As per 3.2.1.4 update $\phi_{0}=10^{\circ} 40.67^{\prime}$ into regula falsi $\phi_{1}=10^{\circ} 40.94^{\prime}$

A3-4.1-First Iteration on T

With $T_{10}=0.17578^{\circ}, \phi_{1}=10^{\circ} 40.94^{\prime}$, from (2) get $T_{11}=0.17587^{\circ}, T_{12}=0.17587^{\circ}$, hence $T_{20}=0.17587^{\circ}$

A3-4.2-First Update on ϕ

A3-4.2.1 - With $T_{20}=0.17587^{\circ}$, from (1) get : $h_{1}=80^{\circ} 58.13^{\prime}$ and ($h_{1}-h_{0}$) $=80^{\circ} 58.13^{\prime}-80^{\circ} 58.23^{\prime}=-0.10^{\prime}$ With $\left(h_{1}-h_{0}\right)=-1.08^{\prime}$, we need to increase ϕ_{1} in order to bring h_{2} (next in § A 4.4) closer to h_{0} Hence regula falsi $\phi_{2}=\phi_{1}-\left(h_{1}-h_{0}\right)=10^{\circ} 40.94^{\prime}-\left(-0.10^{\prime}\right)=10^{\circ} 40.84^{\prime}$

A3-4.3-Second iteration on T

With $T_{20}=0.17587^{\circ}, \phi_{1}=10^{\circ} 40.84^{\prime}$, from (2) get $T_{21}=0.17583^{\circ}, T_{22}=0.17583^{\circ}$ hence $T_{30}=0.17583^{\circ}$

A3-4.4-Second Update on ϕ

With $T_{30}=0.17583^{\circ}$, from (1) get : $h_{2}=80^{\circ} 58.23^{\prime}$. Since $\left(h_{2}-h_{0}\right)=0.00^{\prime}$, our iteration is then complete.

EXAMPLE A3-23 Nov 2023, UT culm = 06:19:44 Southerly Moon UL $=81^{\circ} 09.2^{\prime} \mathrm{Cmg} / \mathrm{Smg}=153^{\circ} / 0 \mathrm{kt}$ FINAL POSITION OBTAINED BY THE ITERATION METHOD
Observer's position at UT culmination: 06h19m44.0s / N 1040.84' / W 149005.99'

$$
\Delta \mathrm{U} \mathrm{~T}_{\mathrm{mp}-\mathrm{c}}=\mathrm{UT} \text { Meridian passage }-\mathrm{UT} \text { Culmination }=-0 \mathrm{~m} 43.6 \mathrm{~s}
$$

Observer's position at UT Meridian passage: 06h19m00.4s / N 1040.84' / W $149{ }^{\circ} 05.99^{\prime}$ Quick Check : At 06h19m00.4s MOON height UL $=81^{\circ}$ O9.09',$A z=179.99890^{\circ}$: quick check OK

A3 - Data for Twin-altitude LAN Method Difference between extreme heights: 35.2'

	4	$81^{\circ} 09.2$		$06: 20: 00.0$
	UT	UL Heights		UT
3	$06: 09: 57.0$	$80^{\circ} 50.8$	5	$06: 29: 32.0$
2	$06: 08: 03.5$	$80^{\circ} 43.2$	6	$06: 31: 24.0$
1	$06: 06: 05.5$	$80^{\circ} 34.0$	7	$06: 33: 22.0$

A3 - Position by the Twin-altitude LAN Method with a corrective factor applied to both $\Delta U T_{m p-c}$ and $-\mu \phi \Delta U T_{m p-c}$: " k " $=(15 / \mu \mathrm{T})^{2}=1.0671$
$D \simeq+1^{\circ} 39^{\prime} \mu \mathrm{D}=+16.7^{\prime} / \mathrm{h} \phi \simeq+10^{\circ} 30^{\prime} \mu \phi=0 / \mathrm{h}$
$\mu \mathrm{T}=14.521^{\circ} / \mathrm{h} \Delta \mathrm{UTmp-c}=-40 \mathrm{~s}$
$-0.5\left|(\mu \phi-\mu \mathrm{D}) \Delta U T_{m p-c}\right|=-0.1^{\prime}$
UTculm $=06: 19: 44 \quad k \Delta U T m p-c=-43 \mathrm{~s}$
UTmp $=06: 19: 01 \quad-0.5 \mid(\mu \phi-\mu \mathrm{D}) k \Delta$ UTmp-c $^{\prime}=-0.1^{\prime}$
hULculm $=81^{\circ} 09.2^{\prime} h_{\text {ooculm }}=80^{\circ} 58.5^{\prime} h_{\text {oomp }}=80^{\circ} 58.4^{\prime}$
Position at UTmp : N $10^{\circ} 40.6^{\prime} / \mathrm{W} 149^{\circ} 06.1^{\prime}$
"STEP 2" PERFORMANCE :
Error in UT culm : $\mathbf{0} \mathrm{s}$ Error in H culm : $0 . \mathbf{0}^{\prime}$ "STEP 3" and OVERALL POSITION PERFORMANCE Error in $k \Delta U T m p-c:-0.6 s$

When using " k " : Position Error = 0.3 NM When not using " k " : Position Error = 0.9 NM

A3 - Data for other LAN Methods
Difference between extreme heights : 51.9'

	UT	UL Heights		UT	UL Heights
1	$6: 03: 03.0$	$80^{\circ} 17.3^{\prime}$	10	$6: 21: 39.0$	$81^{\circ} 08.5^{\prime}$
2	$6: 05: 06.5$	$80^{\circ} 28.9^{\prime}$	11	$6: 23: 42.0$	$81^{\circ} 06.1^{\prime}$
3	$6: 07: 07.5$	$80^{\circ} 39.0^{\prime}$	12	$6: 25: 51.0$	$81^{\circ} 01.9^{\prime}$
4	$6: 09: 08.5$	$80^{\circ} 47.7^{\prime}$	13	$6: 27: 53.0$	$80^{\circ} 56.4^{\prime}$
5	$6: 11: 11.0$	$80^{\circ} 55.1^{\prime}$	14	$6: 29: 59.0$	$80^{\circ} 49.0^{\prime}$
6	$6: 13: 17.0$	$81^{\circ} 01.1^{\prime}$	15		
7	$6: 15: 25.0$	$81^{\circ} 05.6^{\prime}$	16		
8	$6: 17: 32.0$	$81^{\circ} 08.2^{\prime}$	17		
9	$6: 19: 34.5$	$81^{\circ} 09.2^{\prime}$	18		

A3 - Position by a $6^{\text {th }}$ order LAN Method
UTCuIm $=6 \mathrm{~h} 19 \mathrm{~m} 44.2 \mathrm{~s} \Delta \mathrm{UTmp-c}=-43.5 \mathrm{~s}$
Position : UTmp $=6 \mathrm{~h} 19 \mathrm{m01.1s} / \mathrm{N} \mathrm{10} \mathbf{0}^{\circ} 40 . \mathbf{8}^{\prime} / \mathrm{W} 149^{\circ} 06.2^{\prime}$
SDEV=0.1 NM , Valid interval width +/- Oh14m @ UTculm , i.e. Valid Observation time span: (06:05-06:34) $\varepsilon \mathrm{T}^{\prime} / \varepsilon \mathrm{h}^{\prime} \leq 2.8$

Longitude Error Uncertainty $(1 \sigma)=0 . \mathbf{2}^{\prime}$
"STEP 2" PERFORMANCE:
Error in UT Culm : -0.2s Error in H culm : 0.0'
"STEP 3" and OVERALL POSITION PERFORMANCE
Error in \triangle UTmp-c : -0.1 s
Actual Position Error : 0.2 NM

NOTE : The following steps refer to the identically numbered earlier precepts

A4-3.2.1.1 - From own Software accurate to +/-4", get for the Moon:
$G H A=149^{\circ} 16.54^{\prime}, \mu R A=0.5205^{\circ} / h, \mu G H A=\mu T=14.52061^{\circ} / h, D e c=+1^{\circ} 39.17^{\prime}, \mu D=0.2790^{\circ} / h$, Parallax=59.20
NOTE : Since the Observer is not moving, $\mu \phi=0^{\circ} / \mathrm{h}$ and $\mu \mathrm{G}=0^{\circ} / \mathrm{h}$

A4-3.2.1.2 - From the Éphémérides Nautiques (2D) Tables, let's perform a preliminary estimate of $\mathbf{h}_{\mathbf{0}}$:
Dip =-3.7' , LL Correction (-Refraction, +Parallax +SD) $=+25.3^{\prime}$, UL D Correction $=-32.3^{\prime}$
Total Correction $=-10.7^{\prime}$ hence h_{0} provisional value $: h_{00}=80^{\circ} 58.5^{\prime}$

A4-3.2.1.4-From h_{00} get regula falsi $\phi_{0}=D+\left(90^{\circ}-h_{00}\right)=-7^{\circ} 22.33^{\prime}$, i.e. a Southerly Latitude

A4-3.2.1.8 - From $T_{00}=0^{\circ}$ and $\phi_{0}=-7^{\circ} 22.33^{\prime}$ from (2) get $T_{01}=-0.17417^{\circ}, T_{02}=-0.17417^{\circ}$, hence $T_{10}=-0.17417^{\circ}$. With $\mathrm{G}_{0}=\left(\mathrm{GHA}-\mathrm{T}_{10}\right)$ get : Observer's $1^{\text {st }}$ Approximate Position at $\left(\phi_{0}=-7^{\circ} 22.33^{\prime}, \mathrm{G}_{0}=149^{\circ} 26.99^{\prime}\right)$

A4-3.2.1.9 - Through a Marcq Saint Hilaire Line of Position yielding -0.1 NM /001.1 ${ }^{\circ}$, the 3D correction onto Moon UL height gives $\mathbf{h}_{\mathbf{0}}=\mathbf{8 0}^{\circ} \mathbf{5 8 . 2 5}$, (vs. earlier $80^{\circ} 58.5^{\prime}$) to be kept from now on. From $\mathbf{h}_{\mathbf{0}}=\mathbf{8 0}^{\circ} \mathbf{5 8 . 2 5}$ '

A4-3.2.1.10.1 - As per 3.2.1.4 update $\phi_{0}=-7^{\circ} 22.33^{\prime}$ into regula falsi $\phi_{1}=-7^{\circ} 22.58^{\prime}$

A4-4.1-First Iteration on T

With $T_{10}=-0.17417^{\circ}, \phi_{1}=-7^{\circ} 22.58^{\prime}$, from (2) get $T_{11}=-0.17425^{\circ}, T_{12}=-0.17425^{\circ}$, hence $T_{20}=-0.17425^{\circ}$

A4-4.2-First Update on ϕ

A4-4.2.1 - With $T_{20}=-0.17425^{\circ}$, from (1) get : $h_{1}=80^{\circ} 58.15^{\prime}$ and ($h_{1}-h_{0}$) $=80^{\circ} 58.15^{\prime}-80^{\circ} 58.25^{\prime}=-0.10^{\prime}$ With $\left(h_{1}-h_{0}\right)=-0.10^{\prime}$, we need to decrease ϕ_{1} in order to bring h_{2} (next in § A 4.4) closer to h_{0} Hence regula falsi $\phi_{2}=\phi_{1}+\left(h_{1}-h_{0}\right)=-7^{\circ} 22.58^{\prime}-\left(-0.10^{\prime}\right)=7^{\circ} 22.48^{\prime}$

A4-4.3-Second iteration on T

With $T_{20}=-0.17425^{\circ}, \phi_{1}=7^{\circ} 22.48^{\prime}$, from (2) get $T_{21}=-0.17422^{\circ}, T_{22}=-0.17422^{\circ}$, hence $T_{30}=-0.17422^{\circ}$

A4-4.4-Second Update on ϕ

With $T_{30}=-0.17422^{\circ}$, from (1) get : $h_{2}=80^{\circ} 58.25^{\prime}$. Since $\left(h_{2}-h_{0}\right)=0.00^{\prime}$, our iteration is then complete.

EXAMPLE A4-23 Nov 2023, UT culm = 06:19:44 Northerly Moon UL $=81^{\circ} 09.2^{\prime} \mathrm{Cmg} / \mathrm{Smg}=153^{\circ} / 0 \mathrm{kt}$ FINAL POSITION OBTAINED BY THE ITERATION METHOD
Observer's position at UT culmination: 06h19m44.0s / S 07²22.48' / W 149²6.99'
$\Delta U T_{m p-c}=$ UT Meridian passage - UT Culmination $=+0 \mathrm{~m} 43.2 \mathrm{~s}$
Observer's position at UT Meridian passage: $06 \mathrm{~h} 20 \mathrm{~m} 27.2 \mathrm{~s} / \mathrm{S} \mathrm{07}{ }^{\circ} 22.48^{\prime} / \mathrm{W} 149^{\circ} 26.99^{\prime}$ Quick Check : At 06h20m27.2s MOON height UL $=81^{\circ} 09.097^{\prime}, A z=0.00041^{\circ}$: quick check OK

A4 - Data for the Twin-altitude LAN Method Difference between extreme heights: 33.5'

		4	$81^{\circ} 09.2^{\prime}$	
$06: 19: 30.0$				
	UT	UL Heights		UT
3	$06: 10: 30.0$	$80^{\circ} 52.6^{\prime}$	5	$06: 28: 59.0$
2	$06.08: 31.0$	$80^{\circ} 44.9^{\prime}$	6	$06: 30: 57.0$
1	$06: 06: 30.5$	$80^{\circ} 35.7^{\prime}$	7	$06: 32: 58.5$

A4 - Position by the Twin-altitude LAN Method with a corrective factor applied to both $\Delta \mathrm{UTmp-c}$
and $-\mu \phi \Delta U T$ mp-c : " k " $=(15 / \mu \mathrm{T})^{2}=1.0671$
$D \simeq+1^{\circ} 39^{\prime} \mu \mathrm{D}=+16.7^{\prime} / \mathrm{h} \phi \simeq-07^{\circ} 30^{\prime} \mu \phi=0 / \mathrm{h}$

$$
\mu \mathrm{T}=14.521^{\circ} / \mathrm{h} \Delta \mathrm{UTmp-c}=+41 \mathrm{~s}
$$

$$
-0.5|(\mu \phi-\mu \mathrm{D}) \Delta \mathrm{UTmp-c\mid}|=-0.1^{\prime}
$$

UTculm $=06: 19: 44 \quad k \Delta U T_{m p-c}=+44 \mathrm{~s}$
UTmp $=06: 20: 28 \quad-0.5\left|(\mu \phi-\mu \mathrm{D}) k \Delta U T_{m p-c}\right|=-0.1^{\prime}$
hULculm $=81^{\circ} 09.2^{\prime} h_{\text {ooculm }}=80^{\circ} 58.5^{\prime} \mathrm{h}_{\text {oomp }}=80^{\circ} 58.4^{\prime}$
Position at UTmp : S 07º $22.2^{\prime} / \mathrm{W} 149^{\circ} 27.2^{\prime}$
"STEP 2" PERFORMANCE:
Error in UT culm : 0 s Error in H culm : 0.0' "STEP 3" and OVERALL POSITION PERFORMANCE Error in $k \Delta U T m p-c$: -0.8 s

When using " k " : Position Error = 0.3 NM When not using " k " : Position Error $=0.6$ NM

A4 - Data for other LAN Methods
Difference between extreme heights : 35.6'

UT					
	UL Heights		UT	UL Heights	
1	$06: 06: 03.0$	$80^{\circ} 33.5^{\prime}$	10	$06: 24.35 .0$	$81^{\circ} 04.6^{\prime}$
2	$06: 08: 06.0$	$80^{\circ} 43.1^{\prime}$	11	$06: 26: 42.0$	$80^{\circ} 59.7^{\prime}$
3	$06: 10: 10.5$	${80^{\circ} 51.5^{\prime}}^{\prime \prime}$	12	$06: 28: 47.5$	$8^{\circ} 50^{\circ} 53.3^{\prime}$
4	$06: 12: 14.0$	$80^{\circ} 58.2^{\prime}$	13	$06: 30: 49.5$	$80^{\circ} 45.5^{\prime}$
5	$06: 14: 17.0$	$81^{\circ} 03.4^{\prime}$	14	$06: 32: 53.0$	$80^{\circ} 36.1^{\prime}$
6	$06: 16: 20.5$	$81^{\circ} 06.9^{\prime}$	15		
7	$06: 18: 25.0$	$81^{\circ} 08.9^{\prime}$	16		
8	$06: 20: 27.0$	$81^{\circ} 09.1^{\prime}$	17		
9	$06: 22: 29.5$	$81^{\circ} 07.7^{\prime}$	18		

A4 - Position by a $6^{\text {th }}$ order LAN Method
UTculm $=6 \mathrm{~h} 19 \mathrm{~m} 44.1 \mathrm{~s} \Delta \mathrm{UT}_{\mathrm{mp}} \mathrm{c}=+\mathbf{4 3 . 2 \mathrm { s }}$
Position : UTmp $=6 \mathrm{~h} 20 \mathrm{~m} 27.3 \mathrm{~s} / \mathrm{SO7}^{\circ} 22.5^{\prime} / \mathrm{W} 149^{\circ} 27.0^{\prime}$ SDEV=0.0 NM , Valid interval width +/- Oh14m @ UTculm , i.e. Valid Observation time span: (06:05-06:34) $\varepsilon \mathrm{T}^{\prime} / \varepsilon h^{\prime} \leq 2.8$ Longitude Error Uncertainty $(1 \sigma)=0.1^{\prime}$
"STEP 2" PERFORMANCE :
Error in UT culm : -0.1 s Error in H culm : 0.0’
"STEP 3" and OVERALL POSITION PERFORMANCE
Error in k $\Delta U T_{m p-c}: 0.0 \mathrm{~s}$
Actual Position Error : 0.0 NM

APPENDIX B - FAST MOVING OBSERVER

In APPENDIX A and APPENDIX B of this document we are comparing the LAN Iteration Method with a LAN Method using both Formula (3.1) here-above and the Formula (4) here-after, namely the "Twin Altitude" Method.

This "Twin Altitude Method" also referred to as the "Double/Equal/Iso Altitude Method" involves taking and recording the times of the very same pre-set altitudes before and after Culmination.

- The Culmination Time is taken as the averaged value of all such Observations. And:
- The Culmination Height is taken separately without recording its time.

The Meridian Passage Time is obtained from the Culmination Time through Formula (3.1).
The Meridian Passage Height is computed from the Culmination Height through the following formula:
(4) $h_{o o M p}=h_{o o} C u l m-0.5\left|(\mu \phi-\mu D) k \Delta U T_{m p-c}\right|$

And for historical reference:

The following Twin Altitude LAN rules were published for the French Navy in 1934 - Ref (1) :
(3) - Attempt using only h Culm's higher than 80°, but do not use h Culm's lower than 60°.
(4) - Carefully prepare the Observations, e.g. for 3 sets of heights observe as per the following schedule :

h Culm range	$89^{\circ}-88^{\circ}$	$88^{\circ}-86^{\circ} 86^{\circ}-84^{\circ} 84^{\circ}-82^{\circ}$	$82^{\circ}-80^{\circ}$		
Start observations ahead of best LAN estimate by:	6 minutes	7 min.	9 min.	11 min.	13 min.
Increase (decrease) successive Sextant heights by:	7^{\prime}	5^{\prime}	4^{\prime}	3^{\prime}	3^{\prime}
Stop observations ahead of best LAN estimate by:	2 minutes	3 min.	5 min.	7 min.	9 min.

The following examples processing noise-free data obtained through reverse-engineering all involve one same Moon LAN Culmination Time and the same Upper Limb: one observed at 31° and one observed at 81°, one from a North Culmination position and one from a South Culmination position, and finally one from a steady Observer and one from a high speed moving Observer, which altogether makes 8 different configurations.

With the LAN Iteration Method used as a benchmark, each of these 8 examples is solved by both:

- The Twin Altitude LAN Method using as benchmark height the Nautical Almanac corrected UL Heights.
- A $\boldsymbol{6}^{\text {th }}$ order LAN Method using as benchmark height the more accurate 3D corrected same UL Heights differing by about 0.25 from their NA corrected counterparts.

The performance of each LAN Method is checked for both:

- "STEP 2" PERFORMANCE :

How do UTCulm and hculm obtained by each method compare to the "reference" initial values.

- "STEP 3" and then OVERALL END POSITION PERFORMANCE :

How do the End Positions derived by each method compare to the "true" End Position obtained by the LAN Iteration Method.

Last note: Many non-significant decimals published throughout for computation performance checks only.

Example B1 : FAST MOVING Observer, Southerly Culmination with UL h = 31 ${ }^{\circ}$

B1 - 23 Nov 2023, TT-UT $=+69.2 \mathrm{~s}, \mathrm{HoE}=15^{\prime}$, Temperature $=50^{\circ} \mathrm{F}$, QFE $=29.83^{\prime \prime}$, UT culm = 06:19:44, Southerly Moon culminating at UL $\mathrm{h}=31^{\circ} 09.2^{\prime}$ seen from an Observer moving at $\mathrm{Cmg} / \mathrm{Smg}=153^{\circ} / 50 \mathrm{kts}$

NOTE : The following steps refer to the identically numbered earlier precepts

Here steps 3.2.1.1 and 3.2.2.2 are identical for both examples A and B.
B1-3.2.1.1 - From own Software accurate to +/-4", get for the Moon:
$G H A=149^{\circ} 16.54^{\prime}, \mu R A=0.5205^{\circ} / \mathrm{h}, \mu \mathrm{GHA}=14.52061^{\circ} / \mathrm{h}, \mathrm{Dec}=+1^{\circ} 39.17^{\prime}, \mu \mathrm{D}=0.2790^{\circ} / \mathrm{h}$, Parallax=59.20

B1-3.2.1.2 - From the Éphémérides Nautiques (2D) Tables, let's perform a preliminary estimate of $\mathbf{h}_{\mathbf{0}}$:
Dip =-3.7', LL Correction (-Refraction, +Parallax + SD $)=+65.2^{\prime}$, UL D Correction $=-32.2^{\prime}$
Total Correction $=+33.0^{\prime}$, hence h_{0} provisional value : $\mathbf{h o o}_{\mathbf{0 0}}=\mathbf{3 1}^{\circ} \mathbf{3 8 . 5 ^ { \prime }}$
B1-3.2.1.4 - From h_{00} get regula falsi $\phi_{0}=D-\left(90^{\circ}-h_{00}\right)=60^{\circ} 00.67^{\prime}$, i.e. a Northerly Latitude
$B 1-3.2 .1 .5 .-\mu \phi=(S m g / 60) \sin \mathrm{Cmg}=-0.74251^{\circ} / \mathrm{h}$
B1-3.2.1.6 $-\mu \mathrm{G}_{0}{ }^{\circ} / \mathrm{h}=-(\mathrm{Smg} / 60) \sin \mathrm{Cmg} / \cos \phi_{0}\{=-0.37833 * 60 \mathrm{NM} / \mathrm{h}=-22.7 \mathrm{kts}($ East Speed $)=\}=-0.75691 \% / \mathrm{h}$
$B 1-3.2 .1 .7-\mu T_{0}{ }^{\circ} / h=\left(15.0410684-\mu R A-\mu G_{0}\right)^{\circ} / h=\left(\mu G H A-\mu G_{0}\right)^{\circ} / h=15.27752 \% / h$
B1-3.2.1.8 - From $\mathrm{T}_{00}=0^{\circ}, \phi_{0}=-56^{\circ} 42.33^{\prime}$ and $\mu \mathrm{T}_{0}=15.20980^{\circ} / \mathrm{h}$ from (2) get $\mathrm{T}_{01}=6.54179^{\circ}$,
$T_{02}=6.51037^{\circ}, T_{03}=6.51067^{\circ}, T_{04}=6.51066^{\circ}, T_{05}=6.51066^{\circ}$ hence $T_{10}=6.51066^{\circ}$. With $G_{0}=\left(G H A-T_{10}\right)$ get:
Observer's $1^{\text {st }}$ Approximate Position at : $\phi_{\mathrm{o}}=60^{\circ} 00.67^{\prime}, \mathrm{G}_{0}=\mathrm{W} 142^{\circ} 45.90^{\prime}$

B1-3.2.1.9 - Through a Marcq Saint Hilaire Line of Position yielding $+12.7 \mathrm{NM} / 187.60^{\circ}$, the 3D correction onto Moon UL height gives $\mathbf{h}_{\mathbf{0}}=\mathbf{3 1}{ }^{\circ} \mathbf{3 8 . 1 8}{ }^{\prime}$, (vs. earlier $31^{\circ} 38.5^{\prime}$) to be kept from now on.

B1-3.2.1.10 - From $h_{0}=31^{\circ} 38.18^{\prime}$:
B1 - 3.2.1.10.1 - As per 3.2.1.4 update $\phi_{0}=60^{\circ} 00.67^{\prime}$ into regula falsi $\phi_{1}=60^{\circ} 00.99^{\prime}$, and :
B1-3.2.1.10.2 - As per 3.2.1.5 update $\mu G_{0}=-0.75691^{\circ} / \mathrm{h}$ into $\mu \mathrm{G}_{1}=-0.75703^{\circ} / \mathrm{h}$, and finally :
B1-3.2.1.10.3-As per 3.2.1.6 update $\mu \mathrm{T}_{0}=15.27752^{\circ} / \mathrm{h}$ into $\mu \mathrm{T}_{1}=15.27764^{\circ} / \mathrm{h}$

B1-4.1-First iteration on T

With $T_{10}=6.51066^{\circ}, \phi_{1}=60^{\circ} 00.99^{\prime}$ and $\mu T_{1}=15.27764^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{11}=6.51204^{\circ}, \mathrm{T}_{12}=6.51203^{\circ}$, $\mathrm{T}_{13}=6.51203^{\circ}$ hence $\mathrm{T}_{20}=6.51203^{\circ}$

B1-4.2. - First update on ϕ and μT

B1 - 4.2.1 - With $T_{20}=6.51203^{\circ}$, from (1) get : $h_{1}=31^{\circ} 25.18^{\prime}$ and $\left(h_{1}-h_{0}\right)=31^{\circ} 25.18^{\prime}-31^{\circ} 38.18^{\prime}=-13.00^{\prime}$
With $\left(h_{1}-h_{0}\right)=-13.00^{\prime}$, we need to decrease ϕ_{1} in order to bring h_{2} (next in §B1-4.4) closer to h_{0} Hence regula falsi $\phi_{2}=\phi_{1}-\left(h_{1}-h_{0}\right)=60^{\circ} 00.99^{\prime}-\left(-13.00^{\prime}\right)=59^{\circ} 47.99^{\prime}$

B1-4.2.2- $\mu \mathrm{G}_{2}=-0.75210^{\circ} / \mathrm{h}$ and $\mu \mathrm{T}_{2}=15.27272^{\circ} / \mathrm{h}$

B1-4.3-Second iteration on T

With $\mathrm{T}_{20}=6.51203^{\circ}, \phi_{2}=59^{\circ} 47.99^{\prime}$ and $\mu \mathrm{T}_{2}=15.27272^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{21}=6.45640^{\circ}, \mathrm{T}_{22}=6.45692^{\circ}$, $\mathrm{T}_{23}=6.45692^{\circ}$, hence $\mathrm{T}_{30}=6.45692^{\circ}$

B1-4.4-Second Update on ϕ and μT

B1-4.4.1 - With $T_{30}=6.45692^{\circ}$, from (1) get : $h_{2}=31^{\circ} 38.29^{\prime}$ and ($h_{2}-h_{0}$) $=31^{\circ} 38.29^{\prime}-31^{\circ} 38.18^{\prime}=+0.11^{\prime}$ With $\left(h_{2}-h_{0}\right)=+0.11^{\prime}$, we need to decrease ϕ_{2} in order to bring h_{3} (next in § B 4.6) further from h_{0} Hence regula falsi $\phi_{3}=\phi_{1}+\left(h_{2}-h_{0}\right)=59^{\circ} 47.99^{\prime}-\left(+0.11^{\prime}\right)=59^{\circ} 48.09^{\prime}$.
$B 1-4.4 .2-\mu G_{3}=-0.75214^{\circ} / \mathrm{h} \quad$ and $\mu \mathrm{T}_{3}=15.27276^{\circ} / \mathrm{h}$

B1-4.5 - Third iteration on T

With $\mathrm{T}_{30}=6.45692^{\circ}, \phi_{3}=59^{\circ} 48.09^{\prime}$ and $\mu \mathrm{T}_{3}=15.27276^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{31}=6.45737^{\circ}, \mathrm{T}_{32}=6.45736^{\circ}$, $\mathrm{T}_{33}=6.45736^{\circ}$ hence $\mathrm{T}_{40}=6.45736^{\circ}$

B1-4.6-Third Update on ϕ and μ T

With $T_{40}=6.45736^{\circ}$, from (1) get : $h_{3}=31^{\circ} 38.18^{\prime}$ and ($h_{3}-h_{0}$) $=31^{\circ} 38.18^{\prime}-31^{\circ} 38.18^{\prime}=0.00^{\prime}$
Since $\left(h_{3}-h_{0}\right)=0.00^{\prime}$, our iteration is then complete and (UT Mer. Pass - UT Culm) $=-T_{40} / \mu T_{3}=-25 \mathrm{~m} 22.1 \mathrm{~s}$

B1 - 5 - FINAL POSITION FROM ITERATION METHOD, AND COMPARISON CHECKS WITH DATA FOR LAN METHODS

EXAMPLE B1-23 Nov 2023, UT culm = 06:19:44 Southerly Moon UL $=31^{\circ} 09.2^{\prime} \mathrm{Cmg} / \mathrm{Smg}=153^{\circ} / 50 \mathrm{kts}$ FINAL POSITION OBTAINED BY THE ITERATION METHOD Observer's position at UT culmination: 06h19m44.0s / N 59³8.09' / W 142²49.10' Δ UTmp-c $=$ UT Meridian passage - UT Culmination $=-25 \mathrm{~m} 22.1 \mathrm{~s}$ Observer's position at UT Meridian passage: 05h54m21.9s / N 6006.93' / W14308.18' Quick Check : At 05h54m21.9s MOON height UL $=30^{\circ} 56.082^{\prime}$, Az $=179.99798^{\circ}$: quick check OK

B1 - Data for the Twin-altitude LAN Method Difference between extreme heights: $\mathbf{2 0}^{\prime}$

		6	$31^{\circ} 09.2^{\prime}$	
$06: 19: 30.0$				
	UT	UL Heights		UT
5	$06: 00: 07.0$	$31^{\circ} 01.3^{\prime}$	7	$06: 39: 20.5$
4	$05: 57: 09.0$	$30^{\circ} 58.8^{\prime}$	8	$06: 42: 13.0$
3	$05: 54: 11.5$	$30^{\circ} 55.9^{\prime}$	9	$06: 45: 07.5$
2	$05: 51: 14.0$	$30^{\circ} 52.7^{\prime}$	10	$06: 48: 02.0$
1	$05: 48: 17.5$	$30^{\circ} 49.1^{\prime}$	11	$06: 51: 00.5$

B1 - Position by the Twin-altitude LAN Method With a corrective factor applied to both $\Delta U T_{m p-c}$ and $-\mu \phi \Delta U T m p-\mathrm{c}: ~ " k$ " $=(15 / \mu \mathrm{T})^{2}=0.9646$
$D \simeq+1^{\circ} 39^{\prime} \mu \mathrm{D}=+16.7^{\prime} / \mathrm{h} \phi \simeq+59^{\circ} 50^{\prime} \mu \phi=-44.6^{\prime} / \mathrm{h}$ $\mu \mathrm{T}=15.273^{\circ} / \mathrm{h} \Delta \mathrm{UTmp}_{\mathrm{m}} \mathrm{c}=-26 \mathrm{~m} 24 \mathrm{~s}$ $-0.5|(\mu \phi-\mu \mathrm{D}) \Delta \mathrm{UTmp-c}|=-13.5^{\prime}$
UTculm $=06: 19: 40 \quad k \Delta U T m p-c=-25 \mathrm{~m} 28 \mathrm{~s}$ UTmp $=05: 54: 12 \quad-0.5|(\mu \phi-\mu D) k \Delta U T m p-c|=-13.0^{\prime}$ hULculm $=31^{\circ} 09.2^{\prime} h_{\text {ooculm }}=31^{\circ} 38.5^{\prime} h_{\text {homp }}=31^{\circ} 25.5^{\prime}$ Position at UTmp : N6006.5' / W $143^{\circ} 05.8^{\prime}$
"STEP 2" PERFORMANCE:
Error in UT culm : - 4s Error in H culm : 0.0' "STEP 3" and OVERALL POSITION PERFORMANCE Error in kUUTmp-c : +5.9 s

When using " k " : Position Error = 1.3 NM When NOT using " k " : Position Error = 8.0 NM

B1 - Data for other LAN Methods
Difference between extreme heights : 25'

	UT	UL Heights		UT	UL Heights
1	$05: 45: 00.0$	$30^{\circ} 44.7^{\prime}$	10	$06: 30: 00.0$	$31^{\circ} 07.0^{\prime}$
2	$05: 50: 00.0$	$30^{\circ} 51.2^{\prime}$	11	$06: 35: 00.0$	$31^{\circ} 04.4^{\prime}$
3	$05: 55: 00.0$	$30^{\circ} 56.7^{\prime}$	12	$06: 40: 00.0$	$31^{\circ} 00.8^{\prime}$
4	$06: 00: 00.0$	$31^{\circ} 01.2^{\prime}$	13	$06: 45: 00.0$	$30^{\circ} 56.1^{\prime}$
5	$06: 05: 00.0$	$31^{\circ} 04.8^{\prime}$	14	$06: 50: 00.0$	$30^{\circ} 50.4^{\prime}$
6	$06: 10: 00.0$	$31^{\circ} 07.3^{\prime}$	15	$06: 55: 00.0$	$30^{\circ} 43.6^{\prime}$
7	$06: 15: 00.0$	$31^{\circ} 08.7^{\prime}$	16		
8	$06: 20: 00.0$	$31^{\circ} 09.2^{\prime}$	17		
9	$06: 25: 00.0$	$31^{\circ} 08.6^{\prime}$	18		

B1 - Position by a $6^{\text {th }}$ order LAN Method
UTculm $=6 \mathrm{~h} 19 \mathrm{~m} 44.7 \mathrm{~s} \Delta \mathrm{UTmp}-\mathrm{c}=-25 \mathrm{~m} 22.0 \mathrm{~s}$
Position : UTmp $=5 h 54 m 22.6 s / N 60^{\circ} 06.7^{\prime} / W^{\prime} 143^{\circ} 08.3^{\prime}$ SDEV=0.2 NM , Valid interval width +/- 1h20m @ UTculm , i.e. Valid Observation time span: (04:59-07:40) $\varepsilon \mathrm{T}^{\prime} / \varepsilon h^{\prime} \leq 4.9$ Longitude Error Uncertainty $(1 \sigma)=0.9^{\prime}$
"STEP 2" PERFORMANCE :
Error in UT Culm : -0.7 s Error in H culm : 0.0'

"STEP 3" and OVERALL POSITION PERFORMANCE
 Error in $k \Delta U T m p-c:-0.1 ~ s$

Actual Position Error : 0.2 NM

Example B2 : FAST MOVING Observer, Northerly Culmination with UL h = 31

B2-23 Nov 2023, TT-UT = +69.2 s, HoE = 15', Temperature = 50 F, QFE = 29.83", UT culm = 06:19:44, Northerly Moon culminating at UL $\mathrm{h}=31^{\circ} 09.2^{\prime}$ seen from an Observer moving at 50 kts with $\mathbf{C m g}$ at 153°

NOTE : The following steps refer to the identically numbered earlier precepts

Here steps 3.2.1.1 and 3.2.2.2 are identical for both examples A and B.

B2-3.2.1.1 - From own Software accurate to +/-4", get for the Moon:
$G H A=149^{\circ} 16.54^{\prime}, \mu R A=0.5205^{\circ} / \mathrm{h}, \mu \mathrm{GHA}=14.52061^{\circ} / \mathrm{h}, \mathrm{Dec}=+1^{\circ} 39.17^{\prime}, \mu \mathrm{D}=0.2790^{\circ} / \mathrm{h}$, Parallax=59.20

B2 - From the Éphémérides Nautiques (2D) Tables, let's perform a preliminary estimate of $\mathbf{h}_{\mathbf{0}}$:
Dip =-3.7' , LL Correction (-Refraction, +Parallax +SD) $=+65.2^{\prime}$, UL D Correction $=-32.2^{\prime}$
Total Correction $=+33.0^{\prime}$, hence h_{0} provisional value $: h_{\mathbf{o o}}=31^{\circ} 38.5^{\prime}$
$B 2$ - 3.2.1.4 - From h_{00} get regula falsi $\phi_{0}=D+\left(90^{\circ}-h_{00}\right)=-56^{\circ} 42.33^{\prime}$, i.e. a Southerly Latitude
$B 2-3.2 .1 .5 .-\mu \phi=(S m g / 60) \sin \mathrm{Cmg}=-0.74251^{\circ} / \mathrm{h}$

B2-3.2.1.6- $\mu \mathrm{G}_{\mathrm{o}}{ }^{\circ} / \mathrm{h}=-(\mathrm{Smg} / 60) \sin \mathrm{Cmg} / \cos \phi_{o}=-0.37833 * 60 \mathrm{NM} / \mathrm{h}=-0.68919{ }^{\circ} / \mathrm{h}$
$B 2-3.2 .1 .7-\mu T_{0}{ }^{\circ} / h=\left(15.0410684-\mu R A-\mu G_{0}\right)^{\circ} / h=\left(\mu G H A-\mu G_{0}\right)^{\circ} / h=15.20980 \% / h$
B2-3.2.1.8 - From $\mathrm{T}_{00}=0^{\circ}, \phi_{0}=-56^{\circ} 42.33^{\prime}$ and $\mu \mathrm{T}_{0}=15.20980^{\circ} / \mathrm{h}$ from (2) get $\mathrm{T}_{01}=-5.98093^{\circ}$, $T_{02}=-5.95745^{\circ}, T_{03}=-5.95763^{\circ}, T_{04}=-5.95763^{\circ}$ hence $T_{10}=-5.95763^{\circ}$. With $G_{0}=\left(G H A-T_{10}\right)$ get:

Observer's $1^{\text {st }}$ Approximate Position at : $\phi_{0}=-56^{\circ} 42.33^{\prime}, \mathrm{G}_{0}=\mathrm{W} 155^{\circ} 14.00^{\prime}$

B2-3.2.1.9 - Through a Marcq Saint Hilaire Line of Position yielding +11.6 NM / 007.0 ${ }^{\circ}$, the 3D correction onto Moon UL height gives $\mathbf{h}_{\mathbf{0}}=31^{\circ} \mathbf{3 8 . 1 8}$, (vs. earlier $31^{\circ} 38.5^{\prime}$) to be kept from now on.

B2 - 3.2.1.10 - From $\mathbf{h}_{\mathbf{0}}=\mathbf{3 1}^{\circ} \mathbf{3 8 . 1 8}{ }^{\prime}$

B2 - 3.2.1.10.1 - As per 3.2.1.4 update $\phi_{0}=-56^{\circ} 42.33^{\prime}$ into regula falsi $\phi_{1}=-56^{\circ} 42.65^{\prime}$, and :
B2-3.2.1.10.2 - As per 3.2.1.5 update $\mu G_{0}=-0.38499^{\circ} / \mathrm{h}$ into $\mu \mathrm{G}_{1}=-0.68929^{\circ} / \mathrm{h}$, and finally :

B2-3.2.1.10.3-As per 3.2.1.6 update $\mu \mathrm{T}_{0}=14.90560^{\circ} / \mathrm{h}$ into $\mu \mathrm{T}_{1}=15.20990^{\circ} / \mathrm{h}$

B2-4.1-First iteration on T

With $\mathrm{T}_{10}=-5.95763^{\circ}, \phi_{1}=-56^{\circ} 42.65^{\prime}$ and $\mu \mathrm{T}_{1}=15.20990^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{11}=-5.95879^{\circ}, \mathrm{T}_{12}=-5.95878^{\circ}$, $T_{13}=-5.95878$ hence $T_{20}=-5.95878^{\circ}$

B2-4.2. - First update on ϕ and μT

B2 - 4.2.1 - With $T_{20}=-5.95878^{\circ}$, from (1) get : $h_{1}=31^{\circ} 26.22^{\prime}$ and $\left(h_{1}-h_{0}\right)=31^{\circ} 26.22^{\prime}-31^{\circ} 38.18^{\prime}=-11.96^{\prime}$
With $\left(h_{1}-h_{0}\right)=-11.96^{\prime}$, we need to increase ϕ_{1} in order to bring h_{2} (next in § B2-4.4) closer to $h_{\mathbf{o}}$
Hence regula falsi $\phi_{2}=\phi_{1}-\left(h_{1}-h_{0}\right)=-56^{\circ} 42.65^{\prime}-\left(-11.96^{\prime}\right)=-56^{\circ} 30.70^{\prime}$
$\mathrm{B} 2-4.2 .2-\mu \mathrm{G}_{2}=-0.68566^{\circ} / \mathrm{h} \quad$ and $\mu \mathrm{T}_{2}=15.20627^{\circ} / \mathrm{h}$

B2-4.3-Second iteration on T

With $T_{20}=-5.95878^{\circ}, \phi_{2}=-56^{\circ} 30.70^{\prime}$ and $\mu T_{2}=15.206278^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{21}=-5.91594^{\circ}, \mathrm{T}_{22}=-5.91627^{\circ}$, $\mathrm{T}_{23}=-5.91627^{\circ}$ Hence $\mathrm{T}_{30}=-5.91627^{\circ}$

B2-4.4-Second Update on ϕ and μT

B2-4.4.1 - With $T_{30}=-5.91627^{\circ}$ from (1) get : $h_{2}=31^{\circ} 38.26^{\prime}$ and ($h_{2}-h_{0}$) $=31^{\circ} 38.26^{\prime}-31^{\circ} 38.18^{\prime}=+0.08^{\prime}$ With $\left(h_{2}-h_{0}\right)=+0.08^{\prime}$, we need to decrease ϕ_{1} in order to bring h_{3} (next in $\S \mathbf{B 2}$ - 4.6) closer to h_{0} Hence regula falsi $\phi_{3}=\phi_{2}-\left(h_{2}-h_{0}\right)=-56^{\circ} 30.70^{\prime}-\left(0.08^{\prime}\right)=-56^{\circ} 30.78^{\prime}$
B2-4.4.2- $\mu \mathrm{G}_{3}=-0.68568^{\circ} / \mathrm{h} \quad$ and $\mu \mathrm{T}_{3}=15.20630^{\circ} / \mathrm{h}$

B2-4.5-Third iteration on T

With $T_{30}=-5.91627^{\circ}, \phi_{3}=-56^{\circ} 30.70^{\prime}$ and $\mu T_{3}=15.20630^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{31}=-5.91656^{\circ}, \mathrm{T}_{32}=-5.91656^{\circ}$, $T_{33}=-5.916565^{\circ}$, hence $T_{40}=-5.91656^{\circ}$

B2-4.6 - Third Update on ϕ and $\mu \mathrm{T}$

B2-4.6.1 - With $T_{40}=-5.91656^{\circ}$ from (1) get : $h_{4}=31^{\circ} 38.18^{\prime}$ and ($h_{4}-h_{0}$) $=31^{\circ} 38.18^{\prime}-31^{\circ} 38.18^{\prime}=-0.00^{\prime}$ Since $\left(h_{4}-h_{0}\right)=0.00^{\prime}$, our iteration is then complete. (UT Mer. Pass - UT Culm) $=-T_{40} / \mu T_{3}=+23 \mathrm{~m} 20.7 \mathrm{~s}$

B2-5 - FINAL POSITION FROM ITERATION METHOD, AND COMPARISON CHECKS WITH DATA FOR LAN METHODS

EXAMPLE B2-23 Nov 2023, UT culm = 06:19:44 Northerly Moon UL $=31^{\circ} 09.2^{\prime} \mathrm{Cmg} / \mathrm{Smg}=153^{\circ} / 50 \mathrm{kts}$										
FINAL POSITION OBTAINED BY THE ITERATION METHOD Observer's position at UT culmination: $06 \mathrm{~h} 19 \mathrm{~m} 44.0 \mathrm{~s} / \mathrm{S} 56^{\circ} \mathbf{3 0 . 7 8}$ / W 155 ${ }^{\circ} 11.53^{\prime}$ $\Delta U_{m p-c}=$ UT Meridian passage - UT culmination $=+23 \mathrm{~m} 20.7 \mathrm{~s}$ Observer's position at UT Meridian passage: $06 \mathrm{~h} 43 \mathrm{~m} 04.7 \mathrm{~s} / \mathrm{S} 56^{\circ} 48.11^{\prime} / \mathrm{W} 154^{\circ} 55.53^{\prime}$, At 06h43m04.7s MOON height UL $=30^{\circ} 57.130^{\prime}, A z=359.99895^{\circ}$: quick check $O K$										
B2 - Data for the Twin-altitude LAN Method Difference between extreme heights: 34^{\prime}					B2 - Data for other LAN Methods Difference between extreme heights : 34'					
	6	31 ${ }^{\circ} 09.2^{\prime}$		06:20:00.0		UT	UL Heights		UT	UL Heights
	UT	UL Heights		UT	1	05:40:22.0	30³4.7'	10	06:56:24.5	30 ${ }^{\circ} 39.6$
5	05:50:53.5	30 ${ }^{\circ} 50.6$	7	06:48:50.0	2	05:43:17.5	30 ${ }^{\circ} 39.6$	11	06:59:19.0	30 ${ }^{\circ} 34.7$
4	05:48:17.0	3047.1 ${ }^{\prime}$	8	06:51:23.0	3	05:45:43.0	3043.4'	12	This example carries the same data as the win-Altitude Lan Method running on the left side of this page	
3	05:45:43.0	3043.4'	9	06:53:57.0	4	05:48:17.0	$30^{\circ} 47.1^{\prime}$	13		
2	05:43:17.5	30 ${ }^{\circ} 39.6$ '	10	06:56:24.5	5	05:50:53.5	30 ${ }^{\circ} 50.6$	14		
1	05:40:22.0	30 ${ }^{\circ} 34.7{ }^{\prime}$	11	06:59:19.0	6	06:20:00.0	$31^{\circ} 09.2^{\prime}$	15		
B2 - Position by the Twin-altitude LAN Method with a corrective factor applied to both $\Delta \mathrm{UTmp-c}$ and $-\mu \phi \Delta U T m p-\mathrm{c}: ~ " \mathrm{k}$ " $=(15 / \mu \mathrm{T})^{2}=0.9731$ $D \simeq+1^{\circ} 39^{\prime} \mu \mathrm{D}=+16.7^{\prime} / \mathrm{h} \phi \simeq-56^{\circ} 30^{\prime} \mu \phi=-44.6^{\prime} / \mathrm{h}$ $\mu \mathrm{T}=15.206^{\circ} / \mathrm{h} \Delta \mathrm{UTmp}-\mathrm{c}=+24 \mathrm{m02s}$ $-0.5\left\|(\mu \phi-\mu \mathrm{D}) \Delta U T_{m p-c \mid}\right\|=-12.3^{\prime}$ UTculm $=06: 19: 51 \quad k \Delta U T m p-c=+23 \mathrm{~m} 23 \mathrm{~s}$ UTmp $=06: 43: 14 \quad-0.5\left\|(\mu \phi-\mu \mathrm{D}) k \Delta U T_{m p-c}\right\|=-11.9^{\prime}$ hULculm $=31^{\circ} 09.2^{\prime} h_{\text {hooculm }}=31^{\circ} 38.5^{\prime} h_{\text {oomp }}=31^{\circ} 26.6^{\prime}$ Position at UTmp : S $56^{\circ} 47.7^{\prime} / \mathrm{W} 154^{\circ} 57.8^{\prime}$ "STEP 2" PERFORMANCE: Error in UT culm : -9 s Error in H culm : 0.0' "STEP 3" and OVERALL POSITION PERFORMANCE Error in k$\Delta U T$ mp-c : - 2 s When using " k " : Position Error = 1.3 NM When NOT using " k " : Position Error = 6.4 NM					7	06:48:50.0	30 ${ }^{\circ} 50.5$	16		
					8	06:51:23.0	$30^{\circ} 47.1^{\prime}$	17		
					9	06:53:57.0	3043.4'	18		
					```B2 - Position by a \(6^{\text {th }}\) order LAN Method \[ \text { UTculm }=6 \mathrm{~h} 19 \mathrm{~m} 43.7 \mathrm{~s} \Delta \mathrm{UTmp-c}=+23 \mathrm{~m} 20.9 \mathrm{~s} \] \[ \text { Position : UTmp }=06 \mathrm{~h} 43 \mathrm{~m} 04.6 \mathrm{~s} / \mathrm{S}^{\circ} 6^{\circ} 48.2^{\prime} / \mathrm{W}^{\prime} 54^{\circ} 55.5^{\prime} \] SDEV=0.2 NM , Valid interval width +/- 1h17m @ UTculm , \[ \text { i.e. Valid Observation time span: (05:02-07:37) } \varepsilon \top^{\prime} / \varepsilon h^{\prime} \leq 4.8 \] \[ \text { Longitude Error Uncertainty }(1 \sigma)=0.8^{\prime} \] \\ "STEP 2" PERFORMANCE : \\ Error in UT Culm : 0.3 s Error in H culm : 0.0' \\ "STEP 3" and OVERALL POSITION PERFORMANCE \\ Error in k \(\Delta\) UTmp-c : -0.2s \\ Actual Position Error : 0.1 NM```					

From the Final position and time, the following Moon UL heights are obtained through reverse-engineering: B2-6.1 - Moon Position at UT Culmination $=06 \mathrm{~h} 19 \mathrm{~m} 44 \mathrm{~s}$

$$
\text { h UL }=31^{\circ} 09.194^{\prime}\left(\text { vs. UL benchmark at } 31^{\circ} 09.2^{\prime}\right) / A z=006.95159^{\circ}
$$

B2-6.2-Check for actual culmination occurring within $+/-30$ SECONDS of time around Culmination time UT culm - 30s $=06 \mathrm{~h} 19 \mathrm{~m} 14 \mathrm{~s} / 31^{\circ} 09.188^{\prime}$ UT Culm / 31 ${ }^{\circ} 09.194^{\prime}$ UT Culm $+\mathbf{3 0 s}=06 \mathrm{~h} 20 \mathrm{~m} 14 \mathrm{~s} / \mathbf{3 1}{ }^{\circ} \mathbf{0 9 . 1 8 8} \mathbf{\prime}^{\prime}$ B2-6.3-Check for actual culmination occurring within $+/-10$ SECONDS of time around Culmination time UT culm - 10s $=06 \mathrm{~h} 19 \mathrm{~m} 34 \mathrm{~s} / 31^{\circ} 09.193^{\prime}$ UT Culm $/ 31^{\circ} 09.194^{\prime}$ UT Culm $+30 \mathrm{~s}=06 \mathrm{~h} 19 \mathrm{~m} 54 \mathrm{~s} / 31^{\circ} 09.193^{\prime}$ Bingo !

## Example B3 : FAST MOVING Observer, Southerly Culmination with UL $\mathbf{h}=\mathbf{8 1}{ }^{\circ}$

B3-23 Nov 2023, TT-UT = +69.2 s, HoE = 15', Temperature = 50 F, QFE = 29.83", UT culm = 06:19:44, Southerly Moon culminating at $\mathrm{UL} \mathrm{h}=81^{\circ} 09.2^{\prime}$ seen from an Observer moving at 50 kts with Cmg at $153^{\circ}$

NOTE : The following steps refer to the identically numbered earlier precepts

Here steps 3.2.1.1 and 3.2.2.2 are identical for both examples $A$ and $B$.

B3-3.2.1.1 - From own Software accurate to +/-4", get for the Moon:

GHA $=149^{\circ} 16.54^{\prime}, \mu R A=0.5205^{\circ} / \mathrm{h}, \mu \mathrm{GHA}=14.52061^{\circ} / \mathrm{h}, \mathrm{Dec}=+1^{\circ} 39.17^{\prime}, \mu \mathrm{D}=0.2790^{\circ} / \mathrm{h}$, Parallax=59.20

B3-3.2.1.2 - From the Éphémérides Nautiques (2D) Tables, let's perform a preliminary estimate of $\mathbf{h}_{\mathbf{0}}$ :
Dip =-3.7' , LL Correction (-Refraction, + Parallax + SD $)=+25.3^{\prime}$, UL D Correction $=-32.3^{\prime}$
Total Correction $=-10.7^{\prime}$ hence $h_{0}$ provisional value $: h_{00}=80^{\circ} 58.5^{\prime}$

B3-3.2.1.4 - From $h_{00}$ get regula falsi $\phi_{0}=D+\left(90^{\circ}-h_{00}\right)=+10^{\circ} 40.67^{\prime}$, i.e. a Northerly Latitude
$B 3-3.2 .1 .5 .-\mu \phi=(S m g / 60) \sin \mathrm{Cmg}=-0.74251^{\circ} / \mathrm{h}$

B3-3.2.1.6- $\mu \mathrm{G}_{\mathrm{o}}{ }^{\circ} / \mathrm{h}=-(\mathrm{Smg} / 60) \sin \mathrm{Cmg} / \cos \phi_{o}=-0.37833 * 60 \mathrm{NM} / \mathrm{h}=-0.38499^{\circ} / \mathrm{h}$
$B 3-3.2 .1 .7-\mu T_{0}{ }^{\circ} / h=\left(15.0410684-\mu R A-\mu G_{0}\right)^{\circ} / h=\left(\mu G H A-\mu G_{0}\right)^{\circ} / h=14.90560{ }^{\circ} / h$

B3-3.2.1.8 - From $\mathrm{T}_{00}=0^{\circ}, \phi_{0}=+10^{\circ} 40.67^{\prime}$ and $\mu \mathrm{T}_{0}=14.90560^{\circ} / \mathrm{h}$ from (2) get $\mathrm{T}_{01}=0.62704^{\circ}$, $T_{02}=0.62701^{\circ}$, hence $T_{10}=0.62701^{\circ}$. With $G_{0}=\left(G H A-T_{10}\right)$ get:

Observer's $1^{\text {st }}$ Approximate Position at : $\phi_{0}=10^{\circ} 40.67^{\prime}, \mathrm{G}_{0}=\mathrm{W} 148^{\circ} 38.92^{\prime}$

B3-3.2.1.9 - Through a Marcq Saint Hilaire sight yielding +1.0 NM / 184.0 ${ }^{\circ}$, the 3D correction onto Moon UL height gives $h_{0}=80^{\circ} 58.23^{\prime}$, (vs. earlier $80^{\circ} 58.5^{\prime}$ ) to be kept from now on.

B3-3.2.1.10 - From $h_{0}=80^{\circ} 58.23^{\prime}$

B3-3.2.1.10.1 - As per 3.2.1.4 update $\phi_{0}=+10^{\circ} 40.47^{\prime}$ into regula falsi $\phi_{1}=+10^{\circ} 40.94^{\prime}$, and :

B3-3.2.1.10.2 - As per 3.2.1.5 update $\mu \mathrm{G}_{0}=-0.38499^{\circ} / \mathrm{h}$ into $\mu \mathrm{G}_{1}=-0.38500^{\circ} / \mathrm{h}$, and finally :

B3-3.2.1.10.3-As per 3.2.1.6 update $\mu \mathrm{T}_{0}=14.90560^{\circ} / \mathrm{h}$ into $\mu \mathrm{T}_{1}=14.90561^{\circ} / \mathrm{h}$

## B3-4.1-First iteration on T

With $\mathrm{T}_{10}=0.62677^{\circ}, \phi_{1}=+10^{\circ} 40.94^{\prime}$ and $\mu \mathrm{T}_{1}=14.90561^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{11}=0.62733^{\circ}, \mathrm{T}_{12}=0.62733^{\circ}$, hence $\mathrm{T}_{20}=0.62733^{\circ}$

## B3-4.2. - First update on $\phi$ and $\mu T$

B3-4.2.1 - With $T_{20}=0.62733^{\circ}$, from (1) get : $h_{1}=80^{\circ} 56.94^{\prime}$ and $\left(h_{1}-h_{0}\right)=80^{\circ} 56.94^{\prime}-80^{\circ} 58.23^{\prime}=-1.29^{\prime}$
With $\left(h_{1}-h_{0}\right)=-1.29^{\prime}$, we need to decrease $\phi_{1}$ in order to bring $h_{2}\left(\right.$ next in § B3-4.4) closer to $h_{0}$

Hence regula falsi $\phi_{2}=\phi_{1}+\left(h_{1}-h_{0}\right)=+10^{\circ} 40.93^{\prime}+\left(-1.29^{\prime}\right)=10^{\circ} 39.65^{\prime}$

B3-4.2.2- $\mu \mathrm{G}_{2}=-0.38497^{\circ} / \mathrm{h}$ and $\mu \mathrm{T}_{2}=14.90558^{\circ} / \mathrm{h}$

## B3-4.3-Second iteration on T

With $\mathrm{T}_{20}=0.62733^{\circ}, \phi_{2}=10^{\circ} 39.65^{\prime}$ and $\mu \mathrm{T}_{2}=14.90558^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{21}=0.62581^{\circ}, \mathrm{T}_{22}=0.62581^{\circ}$, Hence $\mathrm{T}_{30}=0.62581^{\circ}$

## B3-4.4-Second Update on $\phi$ and $\mu \mathrm{T}$

B3-4.4.1 - With $\mathrm{T}_{30}=0.62581^{\circ}$ from (1) get : $h_{2}=80^{\circ} 58.23^{\prime}$ and $\left(h_{2}-h_{0}\right)=80^{\circ} 58.23^{\prime}-80^{\circ} 58.23^{\prime}=+0.01^{\prime}$ With $\left(h_{2}-h_{0}\right)=+0.01^{\prime}$, we need to decrease $\phi_{1}$ in order to bring $h_{3}$ (next in § B3-4.6) closer to $h_{0}$ Hence regula falsi $\phi_{3}=\phi_{2}-\left(h_{2}-h_{0}\right)=10^{\circ} 39.65^{\prime}-\left(0.01^{\prime}\right)=10^{\circ} 39.65^{\prime}$
B3-4.4.2- $\mu \mathrm{G}_{3}=-0.38497^{\circ} / \mathrm{h}$ and $\mu \mathrm{T}_{3}=14.90558^{\circ} / \mathrm{h}$

## B3-4.5 - Third iteration on T

With $\mathrm{T}_{30}=0.62581^{\circ}, \phi_{3}=10^{\circ} 39.65^{\prime}$ and $\mu \mathrm{T}_{3}=14.90588^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{31}=0.62581^{\circ}$, hence $\mathrm{T}_{40}=0.62581^{\circ}$
B3-4.6 - Third Update on $\phi$ and $\mu \mathrm{T}$
B3-4.6.1 - With $\mathrm{T}_{40}=0.62581^{\circ}$ from (1) get : $\mathrm{h}_{3}=80^{\circ} 58.23^{\prime}$ and ( $h_{3}-h_{0}$ ) $=80^{\circ} 58.23^{\prime}-80^{\circ} 58.23^{\prime}=0.00^{\prime}$
Since $\left(h_{3}-h_{0}\right)=0.00^{\prime}$, our iteration is then complete. (UT Mer. Pass - UT Culm) $=-T_{40} / \mu T_{3}=-2 \mathrm{~m} 31.1 \mathrm{~s}$

## B3-5 - FINAL POSITION FROM ITERATION METHOD, AND COMPARISON CHECKS WITH DATA FOR LAN METHODS

FINAL POSITION OBTAINED BY THE ITERATION METHOD   Observer's position at UT culmination: $06 \mathrm{~h} 19 \mathrm{~m} 44.0 \mathrm{~s} / \mathrm{N} 10^{\circ} \mathbf{3 9 . 6 5}$ / W 148 ${ }^{\circ} 38.99^{\prime}$ $\Delta U T_{m p-c}=\text { UT Meridian passage }- \text { UT culmination }=-2 \mathrm{~m} 31.1 \mathrm{~s}$   Observer's position at UT Meridian passage: $06 \mathrm{~h} 17 \mathrm{~m} 12.9 \mathrm{~s} / \mathrm{N} 10^{\circ} 41.52^{\prime} / \mathrm{W} 148^{\circ} 39.96^{\prime}$ Check : At 06h17m12.9s MOON height $U L=81^{\circ} 07.891^{\prime}, A z=180.00043^{\circ}$ : quick check $O K$										
B3 - Data for the Twin-altitude LAN Method Difference between extreme heights : 37'					B3 - Data for other LAN Methods Difference between extreme heights : 55'					
		81 ${ }^{\circ} 09.2^{\prime}$		06:20:00.0		UT	UL Heights		UT	UL Heights
	UT	UL Heights		UT		:03:03	80 ${ }^{\circ} 14.4{ }^{\prime}$	10	:21:39.0	8100.4'
3	06:09:57.0	80 ${ }^{\circ} 49.8^{\prime}$	5	06:29:30.0		:05:06.5	$80^{\circ} 26.6$	11	6:23:42	$81^{\circ} 06.0^{\prime}$
	06:08:03	$80^{\circ} 41.7$		06:31:23.5		:07	80 ${ }^{\circ} 37$	12	25:51	$81^{\circ} 01.5$
1	:06:05	³2.	7	3:2		6:09:08.5	$80^{\circ} 46.5^{\prime}$	13	6:27:53.0	$80^{\circ} 55.6^{\prime}$
						6:11:11.0	$80^{\circ} 54.3^{\prime}$	14	6:29:59.0	
B3 - Position by the Twin-altitude LAN Method with a corrective factor applied to both $\Delta U T_{m p-c}$ and - $\mu \phi \Delta$ UTmp-c : "k" $=(15 / \mu \mathrm{T})^{2}=1.0127$ $D \simeq+1^{\circ} 39^{\prime} \mu \mathrm{D}=+16.7^{\prime} / \mathrm{h} \phi \simeq+10^{\circ} 30^{\prime} \mu \phi=-44.6^{\prime} / \mathrm{h}$ $\mu \mathrm{T}=14.906^{\circ} / \mathrm{h} \Delta \mathrm{UTmp-c}=-2 \mathrm{~m} 27 \mathrm{~s}$ $-0.5\|(\mu \phi-\mu \mathrm{D}) \Delta \mathrm{UTmp-c}\|=-1.3^{\prime}$   UTculm = 06:19:43 kDUTmp-c $=-2 \mathrm{~m} 28 \mathrm{~s}$   UTmp $=06: 17: 15-0.5\left\|(\mu \phi-\mu \mathrm{D}) k \Delta U T_{m p-c}\right\|=-1.3^{\prime}$   hULculm $=81^{\circ} 09.2^{\prime} h_{\text {ooculm }}=80^{\circ} 58.5^{\prime} h_{\text {oomp }}=80^{\circ} 57.2^{\prime}$   Position at UTmp : N $10^{\circ} 41.3^{\prime} / \mathrm{W} 148^{\circ} 40.5^{\prime}$   "STEP 2" PERFORMANCE:   Error in UT Culm : 1 s Error in H culm : 0.0' "STEP 3 " and OVERALL POSITION PERFORMANCE Error in $k \Delta U T$ mp-c : - $\mathbf{3} \mathrm{s}$   When using " $k$ " : Position Error $=0.6$ NM   When NOT using " $k$ " : Position Error $=0.6$ NM						6:13:17	$81^{\circ} 00.7^{\prime}$	15		
						6:15:25.0	$81^{\circ} 05.4^{\prime}$	16		
						17:3	$81^{\circ} 08.2$	17		
					9	6:19:34	81 ${ }^{\circ} 09.2^{\prime}$	18		
					B3 - Position by a $6^{\text {th }}$ order LAN Method UTculm $=06 \mathrm{~h} 19 \mathrm{~m} 45.8 \mathrm{~s} \Delta \mathrm{UTmp}_{\mathrm{m}}^{\mathrm{c}}=-2 \mathrm{~m} 31.2 \mathrm{~s}$ Position : UTmp $=06 \mathrm{~h} 17 \mathrm{~m} 14.6 \mathrm{~s} / \mathrm{N} 10^{\circ} 41.5^{\prime} / \mathrm{W} 148^{\circ} 40.4^{\prime}$ SDEV=0.1 NM , Valid interval width +/- Oh14m @ UTculm , i.e. Valid Observation time span : (06:06-06:33) $\varepsilon \mathrm{T}^{\prime} / \varepsilon h^{\prime} \leq 2.8$ Longitude Error Uncertainty $(1 \sigma)=0.4^{\prime}$   "STEP 2" PERFORMANCE :   Error in UT Culm : -1.8 s Error in H culm : 0.0'   "STEP 3" and OVERALL POSITION PERFORMANCE   Error in kUUTmp-c: 0.1 s   Actual Position Error : 0.3 NM					

From the Final position and time, the following Moon UL heights are obtained through reverse-engineering:
B3-6.1- Moon Position at UT Culmination $=06 \mathrm{~h} 19 \mathrm{~m} 44 \mathrm{~s}$

$$
\text { h UL }=81^{\circ} 09.200^{\prime} \text { (vs. h UL benchmark at } 81^{\circ} 09.2^{\prime} \text { ) / Az }=183.98875^{\circ}
$$

B3-6.2-CHECK FOR ACTUAL UL CULMINATION OVER $+/-30$ SECONDS of time around Culmination time UT culm - 30s $=06 \mathrm{~h} 19 \mathrm{~m} 14 \mathrm{~s} / 81^{\circ} 09.148^{\prime}$ UT Culm $/ 81^{\circ} 09.200^{\prime}$ UT Culm $+30 \mathrm{~s}=06 \mathrm{~h} 20 \mathrm{~m} 14 \mathrm{~s} / 81^{\circ} 09.148^{\prime}$

B3-6.3-Check for actual culmination occurring within +/-10 SECONDS of time around Culmination time UT culm - 10s $=06 h 19 m 34 \mathrm{~s} / 81^{\circ} 09.194^{\prime}$ UT Culm $/ 81^{\circ} 09.200^{\prime}$ UT Culm $+10 \mathrm{~s}=06 \mathrm{~h} 19 \mathrm{~m} 54 \mathrm{~s} / 81^{\circ} 09.194^{\prime}$

B3-6.4-Check for actual culmination occurring within ... +/-4 SECONDS !! of time around Culmination time UT culm - 4s $=06 \mathrm{~h} 19 \mathrm{~m} 40 \mathrm{~s} / 81^{\circ} 09.199^{\prime}$ UT Culm $/ 81^{\circ} 09.200^{\prime}$ UT Culm $+4 \mathrm{~s}=06 \mathrm{~h} 19 \mathrm{~m} 48 \mathrm{~s} / 81^{\circ} 09.199^{\prime}$

## Example B4 : FAST MOVING Observer, Northerly Culmination with UL $\mathbf{h}=\mathbf{8 1}{ }^{\circ}$

B4 - 23 Nov 2023, TT-UT $=+69.2 \mathrm{~s}, \mathrm{HoE}=15^{\prime}$, Temperature $=50^{\circ}$ F, QFE $=29.83^{\prime \prime}$, UT culm = 06:19:44, Northerly Moon culminating at UL $\mathrm{h}=81^{\circ} 09.2^{\prime}$ seen from an Observer moving at 50 kts with $\mathbf{C m g}$ at $153^{\circ}$

NOTE : The following steps refer to the identically numbered earlier precepts

Here steps 3.2.1.1 and 3.2.2.2 are identical for both examples $A$ and $B$.

B4-3.2.1.1 - From own Software accurate to +/-4", get for the Moon:
GHA $=149^{\circ} 16.54^{\prime}, \mu R A=0.5205^{\circ} / \mathrm{h}, \mu \mathrm{GHA}=14.52061^{\circ} / \mathrm{h}, \mathrm{Dec}=+1^{\circ} 39.17^{\prime}, \mu \mathrm{D}=0.2790^{\circ} / \mathrm{h}$, Parallax=59.20
B4-3.2.1.2 - From the Éphémérides Nautiques (2D) Tables, let's perform a preliminary estimate of $\mathbf{h}_{\mathbf{0}}$ :
Dip =-3.7' , LL Correction (-Refraction, +Parallax + SD $)=+25.3^{\prime}$, UL D Correction $=-32.3^{\prime}$
Total Correction $=-10.7^{\prime}$ hence $h_{0}$ provisional value : $h_{00}=80^{\circ} 58.5^{\prime}$
B4-3.2.1.4 - From $h_{00}$ get regula falsi $\phi_{0}=D+\left(90^{\circ}-h_{00}\right)=-7^{\circ} 22.33^{\prime}$, i.e. a Southerly Latitude
$B 4-3.2 .1 .5 .-\mu \phi=(S m g / 60) \sin \mathrm{Cmg}=-0.74251^{\circ} / \mathrm{h}$
B4 - 3.2.1.6- $\mu \mathrm{G}_{\mathrm{o}}{ }^{\circ} / \mathrm{h}=-(\mathrm{Smg} / 60) \sin \mathrm{Cmg} / \cos \phi_{0}=-0.37833 * 60 \mathrm{NM} / \mathrm{h}=-0.38148^{\circ} / \mathrm{h}$
$B 4-3.2 .1 .7-\mu T_{0}{ }^{\circ} / h=\left(15.0410684-\mu R A-\mu G_{0}\right)^{\circ} / h=\left(\mu G H A-\mu G_{0}\right)^{\circ} / h=14.90209^{\circ} / h$
B4-3.2.1.8 - From $\mathrm{T}_{00}=0^{\circ}, \phi_{0}=-7^{\circ} 22.33^{\prime}$ and $\mu T_{0}=14.90209^{\circ} / \mathrm{h}$ from (2) get $\mathrm{T}_{01}=-0.62147^{\circ}$, $T_{02}=-0.62144^{\circ}, T_{03}=-0.62144^{\circ}$, hence $T_{10}=-0.62144^{\circ}$. With $G_{0}=\left(G H A-T_{10}\right)$ get:

Observer's $1^{\text {st }}$ Approximate Position at : $\phi_{0}=-7^{\circ} 22.33^{\prime}, \mathrm{G}_{0}=\mathrm{W} 149^{\circ} 53.83^{\prime}$

B4-3.2.1.9 - Through a Marcq Saint Hilaire sight yielding +1.0 NM / 004.0 ${ }^{\circ}$, the 3D correction onto Moon UL height gives $h_{0}=80^{\circ} 58.25^{\prime}$, (vs. earlier $80^{\circ} 58.5^{\prime}$ ) to be kept from now on.

B4-3.2.1.10 - From $h_{0}=80^{\circ} 58.25^{\prime}$
B4 - 3.2.1.10.1 - As per 3.2.1.4 update $\phi_{0}=-7^{\circ} 22.33^{\prime}$ into regula falsi $\phi_{1}=-7^{\circ} 22.58^{\prime}$, and :
B4-3.2.1.10.2 - As per 3.2.1.5 update $\mu G_{0}=-0.38148^{\circ} / \mathrm{h}$ into $\mu \mathrm{G}_{1}=-0.38148^{\circ} / \mathrm{h}$, and finally :
B4-3.2.1.10.3-As per 3.2.1.6 update $\mu \mathrm{T}_{0}=14.90209^{\circ} / \mathrm{h}$ into $\mu \mathrm{T}_{1}=14.90210^{\circ} / \mathrm{h}$

## B4-4.1-First iteration on T

With $\mathrm{T}_{10}=-0.62144^{\circ}, \phi_{1}=-7^{\circ} 22.58^{\prime}$ and $\mu \mathrm{T}_{1}=14.90210^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{11}=-0.62173^{\circ}, \mathrm{T}_{12}=-0.62173^{\circ}$, hence $T_{20}=-0.62173^{\circ}$

## B4-4.2. - First update on $\phi$ and $\mu T$

B4-4.2.1 - With $T_{20}=-0.62173^{\circ}$, from (1) get : $h_{1}=80^{\circ} 56.97^{\prime}$ and $\left(h_{1}-h_{0}\right)=80^{\circ} 56.94^{\prime}-80^{\circ} 58.25^{\prime}=-1.28^{\prime}$
With $\left(h_{1}-h_{0}\right)=-1.28^{\prime}$, we need to increase $\phi_{1}$ in order to bring $h_{2}$ (next in § B4-4.4) closer to $h_{\mathbf{0}}$
Hence regula falsi $\phi_{2}=\phi_{1}-\left(h_{1}-h_{0}\right)=-7^{\circ} 22.58^{\prime}+\left(-1.28^{\prime}\right)=-7^{\circ} 21.31^{\prime}$
B4-4.2.2- $\mu \mathrm{G}_{2}=-0.38146^{\circ} / \mathrm{h}$ and $\mu \mathrm{T}_{2}=14.90208^{\circ} / \mathrm{h}$

## B4-4.3-Second iteration on T

With $\mathrm{T}_{20}=-0.62173^{\circ}, \phi_{2}=-7^{\circ} 21.31^{\prime}$ and $\mu \mathrm{T}_{2}=14.90208^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{21}=-0.62025^{\circ}, \mathrm{T}_{22}=-0.62025^{\circ}$, Hence $T_{30}=-0.62025^{\circ}$

## B4-4.4-Second Update on $\phi$ and $\mu T$

B4-4.4.1 - With $\mathrm{T}_{30}=-0.62025^{\circ}$ from (1) get : $\mathrm{h}_{2}=80^{\circ} 58.25^{\prime}$ and ( $h_{2}-h_{0}$ ) $=80^{\circ} 58.23^{\prime}-80^{\circ} 58.25^{\prime}=0.01^{\prime}$ With $\left(h_{3}-h_{0}\right)=+0.01^{\prime}$, we need to decrease $\phi_{1}$ in order to bring $h_{3}$ (next in § B4-4.6) closer to $h_{0}$ Hence regula falsi $\phi_{3}=\phi_{2}-\left(\mathrm{h}_{2}-\mathrm{h}_{0}\right)=-7^{\circ} 21.31^{\prime}-\left(0.01^{\prime}\right)=10^{\circ} 39.65^{\prime}$
B4-4.4.2- $\mu \mathrm{G}_{3}=-0.38146^{\circ} / \mathrm{h}$ and $\mu \mathrm{T}_{3}=14.90208^{\circ} / \mathrm{h}$

## B4-4.5-Third iteration on T

With $T_{30}=-0.62025^{\circ}, \phi_{3}=10^{\circ} 39.65^{\prime}$ and $\mu T_{3}=14.90208^{\circ} / \mathrm{h}$, from (2) get $\mathrm{T}_{31}=-0.62025^{\circ}$, hence $\mathrm{T}_{40}=-0.62025^{\circ}$
B4-4.6 - Third Update on $\phi$ and $\mu \mathrm{T}$

B4-4.6.1 - With $\mathrm{T}_{40}=0.62525^{\circ}$ from (1) get : $h_{3}=80^{\circ} 58.25^{\prime}$ and ( $h_{3}-h_{0}$ ) $=80^{\circ} 58.25^{\prime}-80^{\circ} 58.25^{\prime}=0.00^{\prime}$
Since $\left(h_{2}-h_{0}\right)=0.00^{\prime}$, our iteration is then complete. (UT Mer. Pass - UT Culm) $=-T_{30} / \mu T_{2}=+2 m 29.8 \mathrm{~s}$

## B4-5 - FINAL POSITION FROM ITERATION METHOD, AND COMPARISON CHECKS WITH DATA FOR LAN METHODS



