After allowing for typographical errors and missing explanations, Bowditch 2002 gives

Distance by Vertical Angle Measured Between Sea Horizon and Top of Object Beyond Sea Horizon

$$
\mathrm{D}=\sqrt{\left(\frac{\tan \alpha}{0.0002419}\right)^{2}+\frac{\mathrm{H}-\mathrm{h}}{0.7349}}-\frac{\tan \alpha}{0.0002419}
$$

in which D is the distance in nautical miles, a is the corrected vertical angle, H is the height of the top of the object above sea level in feet, and h is the height of eye of the observer above sea level in feet. The constants 0.0002419 and 0.7349 account for terrestrial refraction.

Setting $\mathrm{H}=0$ and solving for $\tan \alpha$ gives the "exact" result

$$
\mathrm{Ds}=60 \tan ^{-1}\left(\frac{\mathrm{~h}_{\mathrm{f}}}{6076.1 \mathrm{~d}_{\mathrm{s}}}+\frac{\mathrm{d}_{\mathrm{s}}}{8268}\right)
$$

For the small angles concerned (and retaining the excess of digits) this is gives the "approximate" form

$$
\mathrm{Ds}=0.56578 \frac{\mathrm{~h}_{\mathrm{f}}}{\mathrm{~d}_{\mathrm{s}}}+0.4158 \mathrm{~d}_{\mathrm{s}}
$$

Within the "refraction model" that scales the Earth's radius everywhere to $r=\frac{10800}{\pi}\left(\frac{1}{1-\beta}\right)=8268 \mathrm{nmi}$ for $\beta=0.1684$ the exact dip short formula is

$$
\begin{aligned}
\tan \mathrm{Ds} & =\frac{h}{r} \csc \left(\frac{d_{s}}{r}\right)+\left(1-\cos \left(\frac{d_{s}}{r}\right)\right) \csc \left(\frac{d_{s}}{r}\right) \\
& \approx \frac{h}{d_{s}}+\frac{d_{s}}{2 r}+\ldots
\end{aligned}
$$

Robin Stuart

