A cleared lunar distance is used to determine what GMT that distance corresponds to. The Nautical Almanac listed the lunar distances for the moon and various objects at three-hour intervals. The cleared distance would lie within one of those intervals.

The basic idea is to use interpolation to find the time corresponding to the cleared distance.

If
D is the angular difference between the tabulated distances that bracket your cleared distance ($\mathrm{dd}^{\circ} \mathrm{mm}^{\prime} \mathrm{ss}^{\prime \prime}{ }_{\mathrm{UTCi}}$ and $\mathrm{dd}^{\circ} \mathrm{mm}^{\prime} \mathrm{ss}^{\prime \prime}{ }_{\mathrm{UTCi}+3}$), its' value to be used in calculations is given in the P.L. column of the Precomputed Lunar Distances table on the line of the first bracket ($\mathrm{dd}^{\circ} \mathrm{mm}^{\prime} \mathrm{ss}^{\prime \prime}{ }^{\prime} \mathrm{UTCi}^{\prime}$) in the form discussed below;
and
d is the angular difference between the earlier tabulated distance and your cleared distance: dd ${ }^{\circ} \mathrm{mm}{ }^{\prime} \mathrm{ss}^{\prime \prime}{ }_{\mathrm{UTci}}$ and $\mathrm{dd}^{\circ} \mathrm{mm}^{\prime} \mathrm{ss}^{\prime \prime}{ }_{\mathrm{UTCi+t}}$;
and
t is the yet unknown time interval hh:mm:ss between the earlier tabulated distance UTC and the moment of your lunar sight: UTC U_{i} and $\mathrm{UTC}_{\mathrm{i}+\mathrm{t}}$;
then:
D 3 [hours]

- = ----------
or,
t [hours] = 3 [hours] . -
D
or,
t [seconds] = 10800 [seconds].
D

To simplify this calculation the "proportional logarithm" of time t as being the common log of 10800 [seconds] minus the common log of t [seconds] was introduced in the Tables Requisite.

Because

```
    D • t = 10800 • d
we can write:
    log D + log t = log 10800 + log d
or,
    log t = log 10800 + log d - log D
or, (subtracting each term from log of 10800 [seconds]):
    (log 10800 - log t) =
    =(log 10800 - log 10800) + (log 10800 - log d) - (log 10800 - log D)
or,
    (log 10800 - log t) = (log 10800 - log d) - (log 10800 - log D)
```

Therefore:

```
plog t = plog d - plog D
```

where plog is the proportional logarithm as defined above.

An example:
On 2015-Jan-01 the cleared distance between the Moon and Jupiter was found to be equal to 83°.

Looking up the Precomputed Lunar Distances table for that date one finds that the angle (83°) fits within the following brackets:

```
12:00 UT, 84' 35'.2, P.L. 2620
15:00 UT, 82` 56'.8, P.L. 2628
```

D, the total change in the distance during the three-hour interval (the angle between the brackets), equals to

```
84\circ}35.\mp@subsup{2}{}{\prime}-8\mp@subsup{2}{}{\circ}56.\mp@subsup{8}{}{\prime}=\mp@subsup{1}{}{\circ}38.4
```

The value to be used in the calculations (2620) is given in the P.L. column of the Precomputed Lunar Distances table for first (12:00 UT) bracket, so:

$$
\mathrm{plog} D=2620
$$

d is the angular difference between the distance tabulated for 12:00 UT and the distance cleared for the yet unknown time of lunar sight:

$$
\mathbf{d}=84^{\circ} 35.2^{\prime}-83^{\circ} 00.0^{\prime}=1^{\circ} 35.2^{\prime}
$$

Entering the ${ }^{\mathrm{h}}{ }^{\mathrm{m}}$, column of the Tables Requisite with $1^{\circ} 35.2^{\prime}$ we find its' proportional logarithm value (2766) in the P.L. column, so:

$$
p \log d=\underline{2766}
$$

The plog t is:

$$
\mathrm{plog} t=p \log d-p \log \mathrm{D}=2766-2620=\underline{146}
$$

Looking up 146 in Tables Requisite in the P.L. column we notice that it falls between the tabulated values of 145 and 147 , which correspond to $2^{\mathrm{h}} 54.1^{\mathrm{m}}$ and $2^{\mathrm{h}} 54.0^{m}$ or 02:54:06 and 02:54:00 respectively. The interpolated value of t is approximately equal to 02:54:03.

Adding the time offset t of the lunar to the UTC of the first tabulated bracket gives the UTC of the lunar sight itself:

$$
12: 00: 00+02: 54: 03=14: 54: 03
$$

