Compass Check

Version b - corrections

Over the 2019/20 Christmas/New Year holiday period I treated myself to some books. HO200, HO214, Inmans, Davis and Burdwood to be precise. I wanted to make use of the books but did not want anything too complicated. I hit upon the idea of checking the compass on my phone using Burdwood.

As I got into the project I realised that I could do it the old fashioned way using EOT. This required Inmans, which hadn't arrived, for arc to time conversion. However I do have a copy of Raper (1906) which has a similar table.

Here is what I did. I rounded to the nearest minute of time. It may be pure luck that the numbers came out the way they did!!!!!

Measure Sun's Bearing *

I placed my AH on the ground to provide a shadow, moved the phone in the recomended figure of eight motion and noted the sun's bearing with the app GPS Test Plus.

DR 41S 175E
Time 9/1/2019 1658 NZDST by wristwatch.
9/1/2019 0358 UT

Sun's bearing $246^{\circ} \mathrm{M}$
Variation $\quad 22.3^{\circ} \mathrm{E}$
Bearing $268^{\circ} \mathrm{T}$ or S 92 W

Page 17
Dec $22^{\circ} 10.9^{\prime}$
GHA 235° 48.6'
$+8 \mathrm{~min} 2^{\circ}$
$237^{\circ} 48.6^{\prime}$

+ Long $175^{\circ} 00^{\prime}$
$412^{\circ} 48.6^{\prime}$
$\begin{array}{lll}-360 & 52^{\circ} & 48.6^{\prime}\end{array}$
Thus LHA $=52^{\circ} 48.6^{\prime}$

Burdwood is entered with time in am/pm notation so from Raper $(1906,647)$

	h	m	s	
50°	3	20		
2°	0	08		
49^{\prime}		03	$16 \quad$ (rounding arc minutes)	

Hence LAT = 3 hours 31 min PM (rounding to minutes of time)

1904 almanac data

The only book I have with me is Burdwood 1914. My life depends on knowing the compass error to a few degrees. Fortunately Burdwood gives me a way of estimating the dec and LAT. EOT and dec are listed for 1904 and will be accurate every fourth year for 20 years. OK, 116 years (divisible by 4) have passed but my life depends on it.

For the 9th day of January dec $=22^{\circ} \quad 16^{\prime}$
The EOT is sub 6 m 48 s (assume that convention is to subtract the number to get apparent time)
GMT is 0358 so GAT is 0351 . (rounding the numbers)

Now use the arc to time table in Raper to convert DR long to time.

170°	11	20
5°	20	

So $175^{\circ}=11 \mathrm{hr} 40 \mathrm{~min}$
Now can calculate LAT
GAT 0351

+ long 1140
15hr 31min

Subtracting 12 hours gives LAT $=3$ hr 31min PM .

I am extremely stressed out and short on water so I want an azimuth as quickly as posible. Therefore I will not extrapolate as I take the numbers out.

	2020 data	1904 data
Dec	$22^{\circ} 10.9^{\prime}$	$22^{\circ} 16^{\prime}$
LAT	3hr 31min PM	3 hour 31min PM
DR lat	41 S	41 S

Azimuth $96^{\circ} \quad 96^{\circ}$
The instructions in Burdwood state:
In South Latitude When apparent time is P.M. read the azimuth from South to West.
The azimuth is therefore 276° in 360 degree notation.

Compass Error

Compass error $8^{\circ} 8^{\circ}$
I have not specified + or - because there are probably two different conventions!

