Initial Great Circle Course Diagram

The NGA Chart 17 "Great Circle Sailing Chart of the North Atlantic Ocean" has a graphical device for determining the great circle bearing of the destination from the point of departure. The instructions call for locating the point on the great circle (a straight line) at $5^{\circ}, 20^{\circ}$ or 30° longitude difference from the point of departure. The latitude of this point and that of the point of departure are then located on a pair of curves in the diagram. A line drawn through the points gives the bearing.

Assume the curves containing the latitude, L_{1}, of the point of departure and the latitude, L_{2}, of the point along the great circle track are represented parametrically as $\left(x_{L_{1}}, y_{L_{1}}\right)$ and $\left(x_{L_{2}}, y_{L_{2}}\right)$ respectively. For the line drawn between the two curves to lie in the direction of the initial great circle course, C, requires that

$$
\begin{equation*}
\cot C=\frac{y_{L_{2}}-y_{L_{1}}}{x_{L_{2}}-x_{L_{1}}} \tag{1.1}
\end{equation*}
$$

$\cot C$ appears here as courses are measured from North rather than from the x-axis.
The great circle course, C, from an initial point with latitude, L_{1}, and longitude, λ_{1} to a point latitude, L_{2}, and longitude, λ_{2}, can be written as

$$
\tan C=\frac{\sin \Delta \lambda \cos L_{2}}{\cos L_{1} \sin L_{2}-\sin L_{1} \cos L_{2} \cos \Delta \lambda}
$$

where $\Delta \lambda=\lambda_{2}-\lambda_{1}$. (The numerator and denominator of the right hand side can be used as the two arguments of the arctangent function to obtain results in the correct quadrant.)

This equation can be rearranged to

$$
\cot C=\frac{\tan L_{2}-\cos \Delta \lambda \tan L_{1}}{0-\left(-\sin \Delta \lambda \sec L_{1}\right)}
$$

which has the same form as eq.(1.1) and it is therefore a simple matter to read of the required parametric form of the scales

$$
\begin{gathered}
\left(x_{L_{1}}, y_{L_{1}}\right)=\left(-\sin \Delta \lambda \sec L_{1}, \cos \Delta \lambda \tan L_{1}\right) \\
\left(x_{L_{2}}, y_{L_{2}}\right)=\left(0, \tan L_{2}\right)
\end{gathered}
$$

-
$\therefore \quad . . . \because \quad$ COURSES
To determine the course (see example on chart) ataw a straight bine between the ppints of departure and, destination (A B). . Note the latitude (D.) of a point on the track 20° of longitulie from the point of departune (A), and mark it on the mindale Hne of the COURSE DLAGRAM (D)
On the sume diagrax mank, the hatitude of the ship(A) the rit
curves. when salling eastivard, and on the yot curcer when suiling westward, and by means of a papmel muler transher the straght hipe conisecting these two points ($A^{\prime} D^{\prime}$) to the cenfer of the compass and ead an the coipese ($\mathrm{N}: 56^{\circ}$ E: true.)
This gives the courserto starting froin the point of departun (A). It is मiecessary to change the course from time to time in order to keepan the same great cirdle triack as will be seen by measuring the course from othen points on the same track to the point an destination (B)

