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ABSTRACT 

This work presents a direct method for obtaining the 
latitude and longitude of an observer from the observed 
altitudes of two celestial bodies. No assumed position or 
dead-reckoned position or plotting is required. Starting 
with the Greenwich hour angles, declinations, and 
observed altitudes of each pair, the latitude and 

longitude of the two points from which the observations 
must have been made are directly computed. The 
algorithm is presented in the paper, along with its 
derivation. 

Two different, inexpensive, programmable pocket 
electronic calculators were programmed to execute the 
algorithm, and they do it in under 30 s. The algorithm 
was also programmed to run on a personal computer to 
examine the effect of the precision of the calculations on 

the error in the results. The findings show that the use of 
eight decimal places in the trigonometric computations 
provides acceptable results. 
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INTRODUCTION 

Background 

The observation of the altitude, h, of a celestial 
body places the observer on a small circle centered 
at the geographical position (GP) of the body. This 
is called a constant altitude circle, or circle of 
equal altitudes 111. An example of a constant 
altitude circle is shown in Figure 1. The distance 
from the GP, measured along a great circle that 
passes through it, to the constant altitude circle is 
equal to the zenith distance of the body, or to its 
equal, the complement of the altitude490 - h) 
degrees. The longitude at each point on the 
constant altitude circle can be found from the 
latitude. By this means the points on the constant 
altitude circle may be transferred to a chart to plot 
line of position. 

The observation of the altitude of a second body 
similarly places the observer on another constant 
altitude circle that is centered at the GP of the 
second body. An example of two constant altitude 
circles is shown in Figure 2. The intersections of 
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Fig. I-Circle of Constant Altitude 

Fig. Z-Two Circles of Constant Altitude Intersecting for a Fix 
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these two constant altitude circles are the two 
possible points from which the pair of observed 
altitudes could have been measured. One of the 
two points is the location of the observer, a fix, 
while the other is extraneous. Identification of the 
correct intersection can be effected by several 
means, some of which are the consistency of the 
azimuths of the bodies at each intersection with 
the bearings of the bodies at the time of the 
observations; the consistency of the fix with the 
dead reckoning (DR) at the time of the sights; and, 
if available, the consistency of the candidate fix 
with the altitude observed for a third body. 

An algorithm that produces the latitudes and 
longitudes of the two points of intersection of the 
pair of constant altitude circles is presented in a 
later section. It provides a fix for the observer 
directly from the declinations, Greenwich hour 
angles (GHAs), and observed altitudes of the two 
bodies. A heuristic proof of the existence of a 
solution is the fact that a solution can be found by 
construction on a globe. A compass could be used 
to scribe the two constant altitude circles on a 
globe, and the coordinates of the intersections 
could then be found by measurement. But because 
of the limitation of scale-being, for example, 
about 17 mi/mm for a 16 in diameter globe, which 
would result in a 0.5 mm pencil line being about 
8 mi wide-this procedure is of little, if any, 
practical interest. 

Spherical Trigonometric Solution 

At first a geocentric, rectangular coordinate 
system solution based on a “rho-rho-rho” geometry 
was sought: each intersection of the constant 
altitude circles was at a known distance from 
three points-the geocenter and the two GPS. This 
is similar to the matrix approach proposed in [21, 
the rotational method of 131, and the solid 
geometry technique of [41. But that solution was 
set aside in favor of a spherical trigonometric 
approach. This was later found to be identical in 
principle to an approach proposed in 151, but with 
considerable simplification of the calculations, and 
with the law of cosines used instead of the law of 
sines and the simultaneity requirement removed. 
The method of [51 uses the available data to 
provide the parallactic angle in the navigational 
triangle for either of the two observed bodies. 
These triangles are then known “side-angle-side,” 
and either can be solved for the latitude and 
meridian angle of the observer. Reference [51 
proposed simultaneous sights in order to tabulate 
selected star pairs according to their separation in 
right ascension. This is not a requirement here. 

The compact, low-power, lightweight, low-cost, 
fast, accurate, and reasonably rugged electronic 
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calculator makes this direct fix approach practical. 
In the time of [51 (1949), the required calculations 
would have been carried out by hand, probably 
using log-trig tables. Therefore, the law 
of sines, arcsin[sin(a)sin(bYsin(c)l, would be 
easier to calculate than the law of cosines, 
arccos[cos(d)cos(e)cos(f) + sin(e>sin(f)l, because the 
addition in the latter would necessitate antilog 
operations out of the tables to perform the 
addition. But the range of the solution with the 
law of sines is limited to 90 deg, and so quadrantal 
difficulties may arise. The law of cosines has a 
range of zero to 180 deg, and its calculation with a 
modern calculator is easy, fast, and accurate. 

FORMULATION OF THE DIRECT FIX METHOD 

For convenience in using the direct fix, the 
celestial body that is west of the other one of the 
pair by less than 180 deg is designated number 
one, at GPl, with decl, GHAl, and hl; similarly 
for the other body, at GP2, with dec2, GHAB, and 
h2. The special case in which the two bodies have 
the same GHA is dealt with separately. The 
convention that west longitudes are positive, east 
are negative, and north declinations and latitudes 
are positive, south are negative is used. 

The essence of this direct fix is to use the data 
available to compute the parallatic angle in the 
navigational triangle(s) that use body number 1. 
This makes the navigational triangle known “side- 
angle-side” and permits computation of the 
latitude of the observer using the law of cosines. 
The navigational triangle is then known “side-side- 
side,” and its meridian angle can be computed, 
again using the law of cosines (rearranged into the 
“time-sight” form), to produce the longitude. To 
solve for the parallactic angle referred to, two 
spherical triangles, the polar triangle and the 
zenith triangle, are introduced. 

The Polar Triangle 

This triangle is formed by the arcs of two great 
circles, meridians that join each of the two GPS to 
the North Pole, and with the arc of the great circle 
that joins the two GPS. Figure 3 shows the polar 
triangle for an example case. The choice of the 
North Pole is arbitrary, and is based upon 
convenience. The sides of this pseudonavigational 
triangle are the codeclinations of the bodies; the 
meridian angle is the smaller angle between their 
hour circles (or the smaller difference in their 
GHAs). The arc joining the two GPS is similar to 
the coaltitude of a navigational triangle and so is 
called the pseudocoaltitude. The pseudoaltitude is 
designated by h12. 
 Spring 1997 
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Fig. J-The Polar Triangle 

The Zenith Triangles 

A zenith triangle is formed by the three points 
GPl, GP2, and one of the intersections of the 
constant altitude circles. The three sides of these 
triangles are known (after h12 is found). They are 
the complements of the altitudes hl, h2 for bodies 
1 and 2, respectively, and the complement of the 
pseudoaltitude, h12. The angle at GPl is the same 
for the two zenith triangles. The zenith triangles 
for an example case are illustrated in Figures 4 
and 5. 

Latitude and Meridian Angle 

It can now be discerned, from Figure 6, that the 
parallactic angle, Pl, in the navigational triangle 
for the upper intersection is given by angle A at 
GPl for the polar triangle, minus angle B at GPl 
for the zenith triangle, that is, Pl = A - B. From 
Figure 7 for the lower intersection, the parallatic 

Fig. &-Zenith Triangle for “Upper” Zntersection 
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Fig. 5-Zenith Triangle for “Lower” Intersection 
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Fig. 6-Navigational Triangle for “Upper” Intersection 

on 

Fig. ‘/-Navigational Triangle for “Lower” Intersection 
 of Latitude and Longitude 



Copyright © 2007, Institute of Navigation, www.ion.org
angle, P2, in the navigational triangle is found 
from the sum P2 = A + B. The two navigational 
triangles are now known “side-angle-side,” and the 
latitudes of the intersections can be found from the 
law of cosines formula for altitude: 

sin(L1,J = cos(P&os(dlkos(hl) - sin(dl (1) 

With the latitudes found, the navigational 
triangles are now known “side-side-side.” The 
meridian angle is opposite the coaltitude in these 
triangles and is given by the law of cosines, 
rearranged: 

co&J = [sin(hl) - sin(L&n(dl)l / [cos(L&os(dl)l 
(2) 

THE DIRECT FIX PROCEDURE 

List of Symbols and their Significance 

Input Data 

GIL41 is Greenwich hour angle of body number 1 
GHA2 is Greenwich hour angle of body number 2 

dl is declination of body number 1 
d2 is declination of body number 2 
hl is measured altitude of body number 1 
h2 is measured altitude of body number 2 

Intermediate Calculations 

t12 is meridian angle (in the polar triangle) 
h12 is pseudoaltitude (altitude of the body at 

GPl from GP2) 
A is angle at GPl for the polar triangle 
B is angle at GPl for the zenith triangle 

Pl is parallactic angle for the “upper” 
navigational triangle using GPl 

P2 is parallactic angle for the “lower” 
navigational triangle using GPl 

tl is meridian angle for the “upper” 
navigational triangle using GPl 

t2 is meridian angle for the “lower” 
navigational triangle using GPl 

Results 

Ll is latitude of the “upper” intersection of 
the constant altitude circles 

L2 is latitude of the “lower” intersection of 
the constant altitude circles 

Lo1 is longitude for the “upper” intersection of 
the constant altitude circles 

Lo2 is longitude for the “lower” intersection of 
the constant altitude circles 

Algorithm for the Direct Fix 

Subroutines 

alt(a,b,c) = arcsin[cos(a>cos(b)cos(c) 

+ sin(b)s (la) 
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h = alt(a,b,c) is the complement of the side 
opposite the angle a in the spherical triangle, with 
angle a between the sides that are the complement 
of b and the complement of c. 

azi(x,y,z) = arccos [(sin(x) 

- sin(y)sin(z>Mcos(y)cos(z))l (2a) 

Z = azi(x,y,z) is the angle opposite the side that is 
the complement of x in the spherical triangle, with 
sides that are the complements of x, y, and z. 

Procedure 

1. t12 = GHA2 - GHAl (Note: It is not 
necessary that t12 be 
positive or less than 
180 deg.) 

2. h12 = alt(t12,dl,d2) (Note: h12 may be 
negative if body 1 is 
below the horizon at 
GP2.j 

3. A = azi(d2,dl,hl2) 
4. B = azi(h2,hl,hl2) 
5. Pl = A - B 
6. Ll = alt(Pl,dl,hl) 
7. tl = azi(hl,dl,Ll) 

P2=A+B 
L2 = alt(P2,dl,hl) 
t2 = azi(hl,dl,L2) 

8. Combine the meridian angles with GHAl to 
form the longitudes. 

9. The simple algorithm: 
If body number 1 is sighted to the west, set 
Lo1 = GHAl-tl and Lo2 = GHAl - t2. 
If body number 1 is sighted to the east, set 
Lo1 = GHAl + tl and Lo2 = GHAl + t2. 

The simple algorithm is to be used when the 
bearing of body number 1 is reliably known to be 
to the east or west of the observer. This will 
always then yield the correct longitude for that 
one of the two intersections of the constant 
altitude circles from which the observer took the 
sights. However, the bearing of body number 1 
from the unoccupied intersection may not be the 
same as that from the occupied one. In that case, 
the computation of Lo2 with the simple algorithm 
will be incorrect. This would be of significance only 
if it interfered with the correct resolution of the 
ambiguity of position, that is, selection of the fix 
and elimination of the extraneous solution. 

If this is suspected, or if the bearing of body 
number 1 is too close to the observer’s meridian to 
identify it reliably as east or west, the full 
algorithm (definition to follow) should be used. 

10. The full algorithm: 
Compute the altitude of body number 2 
from the four positions: 

Position number 1: Lo = GHAl - tl, 
Lat = Ll 
Spring 1997 
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Position number 2: Lo = GHAl + tl, 
Lat = Ll 
Position number 3: Lo = GHAl - 2, 
Lat = L2 
Position number 4: Lo = GHA2 + t2, 
Lat = L2 

Using: 
h21m = alt(tl2 - tl,dB,Ll) 
h21p = alt(tl2 + tl,d2,Ll) 
h22m = alt(tl2 - t2,d2,L2) 
h22p = alt(tl2 + t2,d2,L2). 

Compare h21m and h21p with h2 for the 
“upper” intersection 

If lh2 - h21ml is smaller than lh2 - 
h21pl, use the longitude of position 1; else 
use the longitude of position 2. 

Compare h22m and h22p with h2 for the 
“lower” intersection 

If lh2 - h22ml is smaller than lh2 - 
h22pl, use the longitude of position 3; else 
use the longitude of position 4. 

Pocket Calculator Programs 

The simple algorithm has been programmed into 
the Hewlett-Packard model 15C and the Radio 
Shack model EC-4026 programmable pocket 
calculators. The running time, exclusive of data 
entry, is under 30 s for both calculators. The input 
data (the 2 GHAs, declinations, and altitudes) are 
first converted, using the calculator manually, 
from degrees, minutes, and tenths of minutes to 
decimal degrees, and are stored in the six reserved 
locations in the calculator. The code for the 
EC-4026 program is presented in Appendix A. 

EXAMPLES 

The algorithm is applied to two artificial cases 
and one case of real observations. The altitudes 
cited are the “observed” altitudes, corrected for 
index error, dip, and refraction. Angles given in 
degrees, minutes, and tenths of a minute were 
converted first to decimal degrees (dd = deg 
+ arcmin!60). 

Artifical Cases 

1. For the values used in Figure 2: 
decl = 75”, GHAl = 30”, hl = 60” 
dec2 = 30”, GHA2 = 320”, h2 = 45” 
Ll = 68.52709349” N, Lo1 = 80.29117843” E 
L2 = 45.73917878” N, Lo2 = 14.72877829” W 

2. Consider the direct reduction of sights taken of 
Betelgeuse and Spica from latitude 35” north and 
longitude 20” east at 0600 UT on October 28, 
1993. Using the Nautical Almanac [61, the GHA of 
Aries (126” 35.9’) and the following data are found 
and/or calculated: 
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Betelgeuse Spica 
SHA 271” 17.0’ 158” 47.1’ 
GHA 37” 52.9’ 285” 23.0’ 
LHA 57” 52.9’ 305” 23.0’ 
declination 7” 24.4’ N 11” 07.7’ s 
altitude 30.38611048” 20.77519091” 
azimuth 256.81178600“ 121.17412990” 

Application of the direct algorithm with these 
GHA, declination, and altitude values leads to: 

t12 112.49833333” 
h12 - 23.40384988” 

A 98.96405910” 
B 45.42538149” 

Pl 53.53867661” P2 144.38944159” 
Ll 35.00000000” N L2 39.06928279” S 
t1 57.88166666” t2 40.31278930” 

Lo1 20.00000000” E Lo2 2.43112263” E 

The navigational triangle for the “upper” 
intersection is presented in Figure 6. The location 
of the extraneous solution at L2, Lo2 is shown in 
Figure 7, along with the navigational triangle for 
the extraneous location. The negative value for 
h12 is of no concern. It reflects the fact that body 
number 1 is below the horizon from the GP of body 
number 2 in this example. 

Real Observation 

Sight data taken on February 4, 1995, from a 
DR position of 24” 32.8’ N, 81” 47.8’ W comprises: 

Body Name GMT GHA DSC Altitude 

1 Spica 11-29-15 105” 14.1’ 11” 08.2’ s 47” 33.8’ 

2 VeIlUS 11-40-31 39” 43.5’ 20” 47.7’ s 28” 54.8’ 

Entering the GHAs, declinations, and altitudes 
into the Radio Shack Model EC-4026 calculator 
and executing the program (file 4, DFIX, Appendix 
A) leads to a fix at 24” 35.6’ N, 81” 46.4’ W (and 
the spurious solution at 53” 28.4’ S, 101” 36.7’ W.) 
This is to be compared with the fix obtained by the 
altitude-intercept method of Marcq St-Hilaire: 
24” 35.6’ N, 81” 46.4’ W, the same result to the 
nearest tenth of a minute. The sight was reduced 
by the law of cosines, giving altitudes and 
azimuths of the two bodies from the DR position. 

SPECIAL CASE 

In the event that the two observed celestial 
bodies have the same GHA, the polar triangle 
collapses to a straight line, and a slightly different 
algorithm is employed. The convention now is that 
body number 1 is selected as the one that has the 
more northerly declination. The complement of the 
angular separation of the two bodies is then 
formed: Dd = 90 - (dl - d21, using the 
convention that southerly declinations are 
 of Latitude and Longitude 19 
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negative. The fix and the extraneous solution have 
the same latitude and are equally distant in 
longitude from the GPS. The parallactic angle is 
given by P = 180” - azi(h2,Dd,hl), and is the 
same for both zenith triangles. The latitude is 
then given by L = alt(P,dl,hl), and the meridian 
angle is found from t = azi(hl,dl,L). The two 
longitudes are found by going east and west from 
the GHA of the bodies by t. An example is given in 
Appendix B. 

ACCURACY ANALYSIS 

The organization of this method for a direct fix 
into subroutines that are repeatedly called to 
ultimately yield the latitude and longitude of the 
intersections of the two constant altitude circles 
masks the extensiveness of the underlying 
trigonometric and arithmetic computations. To 
compute the latitude and meridian angle of one of 
the intersections requires the evaluation of 14 trig 
functions (sine, cosine, or their inverses) and 
14 arithlhetic operations (multiplication or 
division). The effects of calculation with finite word 
size, truncation errors, and inaccuracies in 
trigonometric evaluations are not obvious. To 
determine these effects, the following 
considerations and computer experiment were 
applied. The objective was to determine the 
number of decimal places required so that the 
resulting error in the direct fix due to word size 
would be insignificant with respect to 0.1 arcmin. 

The number of decimal places that are carried in 
computation can be controlled by scaling and 
truncating the values of inputs and outputs from 
functions, such as the sine or arccosine. This was 
done for the case of example number 2 by 
multiplying each value in the computation by lo”, 
where n is the number of decimal places desired; 
dropping any fractional part; and then dividing by 
10”. This was executed, with n ranging from 4 to 
12, on a Pentium 90 processor (fault-free), with the 
result shown in Figure 8. For each value of n used, 
the tens-logarithm of the magnitude of the 
difference between the true latitude and the 
latitude computed by the direct fix is plotted; 
similarly for the errors in longitude and the root- 
sum-square (RSS) error. It can be seen that with 
7 decimal places, the errors are of the order of 
0.06 arcmin. This amounts to about 0.06 nmi and 
would hardly be noticeable in the results. 
However, this accuracy analysis is only cursory, 
and to be conservative, 8 decimal places, with 
errors of about 0.002 arcmin, is considered 
acceptable. A typical high-quality pocket calculator 
(such as the Hewlett-Packard 15C) carries, in 
effect, 12 decimal places, and should prove quite 
adequate for the direct fix. Bear in mind that 
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these accuracy results are for the cascade of the 
seven applications of the law of cosines, that is, for 
the entire direct fix method. 

MOTION OF THE OBSERVER 

The development of the direct fix given above is 
robust and exact for observations taken from the 
same place. The observations need not be 
simultaneous (although they might be with 
observers side by side, or with a double sextant 
[5]), but their times must be registered accurately 
so that the GPS of the bodies at the times of their 
altitude measurement can be found in the 
almanac. The observations need not even be taken 
on the same day. Typically, two sights could be 1 
or 2 min apart on two different bodies. The two 
sights could also be on one body, such as the sun 
or the moon, separated in time by an amount that 
results in the two constant altitudes circles 
crossing sufficiently close to 90 deg for acceptable 
geometric dilution of accuracy (“cut”). The term 
“simultaneous” observation was defined in 151 and 
cited in [7]. The objective of I51 was to tabulate 
star pairs according to their difference in RA for a 
tabular solution of the proposed method, the 
difference in RAs being, for simultaneous sights, 
the same as the difference in GHAs (the value of 
t12, the meridian angle in the polar triangle). If a 
single observer is on a platform that is in motion, 
and the two observations are sequential in time, 
and if the later observation is made from a 
position that is not on the first constant altitude 
circle, then neither intersection of the two constant 
altitude circles can coincide with the location of 
the observer at either time. Techniques for 
compensating for this effect are discussed in 
[7-101. They are all approximations, which can be 
quite adequate. Reference 171 points out that the 
motion effect can be ignored in the case of sailing 
craft, presumably because of the small change in 
location of the observer between the two sights. 

Retirement and Advancement of Constant 
Altitude Circles 

For an exact direct fix that is based on the 
intersections of two constant altitude circles, with 
displacement of the observer between sights, each 
point on the later-time constant altitude circle 
must be retired to reflect its location at the time of 
the earlier sight. If the observer’s platform can be 
assumed to be traveling on a rhumb line, each 
point on the later-time constant altitude circle 
must be moved, along the loxidromic spiral that 
corresponds to the rhumb line of motion through 
that point, by an amount equal to the distance 
traveled between the observations. Or similarly, 
each point on the earlier-time constant altitude 
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circle must be relocated along a loxidromic spiral 
to the position it would have at the time of the 
later observation. This retirement or advancement 
then produces a new locus for the observer. This 
locus can readily be shown not to be exactly a 
circle by considering its generator (the original 
constant altitude circle) to pass near a pole. The 
problem of obtaining a fix by solving for the 
location of the intersections of two constant 
altitude circles now becomes one of solving for the 
intersection of, say, the later-time constant 
altitude circle and the locus of points formed by 
advancing the points on the earlier-time constant 
altitude circle. This might be done by searching for 
the point(s) on the earlier constant altitude circle 
which when extrapolated to their later position lie 
on the later constant altitude circle. It is not clear 
that this has an analytic solution, although 
approximate methods have been proposed 17-101. 
Investigation of this problem beyond this short 
discussion is considered outside the scope of this 
paper. 

CONCLUSIONS 

In summary, it is concluded that by means of an 
ordinary, programmable pocket calculator, the 
declinations, Greenwich hour angles, and altitudes 
from the sights of two celestial bodies can be used 
to compute directly the latitude and longitude of a 
stationary observer and of the extraneous 
intersection of the two constant altitude circles. 
The selection of the fix and rejection of the 
extraneous solution can be effected by use of the 
rough bearings of the bodies when their altitudes 
Vol. 44, No. 1 Gery: Direct Fi
were measured and/or by use of the dead- 
reckoning position at the time of the sight taking. 
The advantages of this approach for producing a 
fix include not having to use a dead-reckoned 
position or calculate an assumed position; 
eliminating the need for tables; and eliminating 
the need for plotting or computing the fix from the 
results of the altitude-intercept method of Marcq 
Saint-Hilaire, which is the current sight reduction 
method of choice. 
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APPENDIX A 

DIRECT FIX CODE FOR PROGRAMMABLE 
POCKET CALCULATOR, RADIO SHACK 
MODEL EC-4026 

ALTITUDE SUBROUTINE: 

FILE number 1: ALT 
line 1 Fixm 
line 2 H = sin-‘(cosAcosBcosC + sinBsinC) 

AZIMUTH SUBROUTINE: 

FILE number 2: AZ1 
line 1 Fixm 
line 2 Z = (sinB - sinCsinH) 
line 3 Z = Z/cosC/cosH 
line 4 Z=coSIZ 

FILE number 4: DFIX 

Line Code 
1 Fixm 
2 A=U-X 

3 B=W 
4 C=T 
5 Prog ALT 

6 B=T 
7 c=w 
8 Prog AZ1 

9 D=Z 
10 B=V 
11 C=Y 
12 Prog AZ1 

Comment 
use/freeze memory 
t12 formed and stored in 
register A 
decl into register B 
dec2 into register C 
call alt subroutine, yields 
h12 = alt(tl2,decl,dec2) in 
register H 
dec2 into register B 
decl into register C 
yields 
“A” = azi(dec2,decl,hl2), 
and stores “A” in register Z 
save “A” in register D 
h2 into register B 
hl into register C 
yields “B”= azi(h2,hl,hl2) 
into register Z 
22 Navigatio
13 E=Z save “B” in register E 
14 A=D-E “upper” parallactic angle 

“P” into register A 
15 B=W decl into register B 
16 C=Y hl into register C 
17 Prog ALT yields Latl = alt(Pl,dl,hl) 

in register H 
18 F = H, display saves Latl in register F 

and halts to show Latl 
19 B=Y hl into register B 
20 c=w decl into register C 
21 H=F Latl into register H 
22 Prog AZ1 yields meridian angle for 

upper solution in register Z 
23 G=Z save meridian angle in 

register G 
24 I =X-G, display longitude of upper solution 

into register I, and halt 
25 A=D+E “lower” parallactic angle 

“P” into register A 
26 B=W decl into register B 
27 C=Y hl into register C 
28 Prog ALT yields Lat2 = alt(P2,dl,hl) 

in register H 
29 J = H, display saves Lat2 in register J and 

halts to show Lat2 
30 B=Y hl into register B 
31 c=w decl into register C 
32 Prog AZ1 yields meridian angle for 

lower solution in register Z 
33 K=Z save meridian angle in 

register K 
34 L =X - K, display longitude of lower solution 

in register L, and halt 

INPUT REGISTER ALLOCATIONS: 
T: Declination of body #2, dec2 
U: gha of body #2, gha2 
V: altitude of body #2, h2 
X: gha of body #l, gha.1 
Y: altitude of body #I, hl 
W: declination of body #l, decl 

RESULTS REGISTER ALLOCATIONS: 

H: 
Z: 
D: 
E: 
F: 
G: 

Result of altitude subroutine, ALT(a,b,c) 
Result of azimuth subroutine, AZI(x,y,z) 
save parallactic angle “A” 
save parallactic angle “B” 
save Latitude 1, of upper intersection 
save meridian angle 1, for upper 
intersection 

I: save longitude 1, of upper intersection 
J: save Latitude 2, of lower intersection 
K: save meridian angle 2, for lower intersection 
L: save longitude 2, of lower intersection 
n Spring 1997 
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APPENDIX B 
EXAMPLE OF THE SPECIAL CASE 

As an example of the special case in which the 
two bodies have the same GHA, consider an 
observer in north latitude 2” 15.1’, at east 
longitude 179” 30.9’, about 400 nmi east of the 
Gilbert Islands, on March 12, 1993. At morning 
twilight, Arcturus is observed at 05-30-14 ZT to 
have an altitude of 51” 15.7’ in the northwest. 
Soon after, at 05-32-38 ZT, the moon is sighted in 
the southwest with an altitude of 49” 54.7’. The 
Greenwich times and dates are found to be 
17-30-14 for Arcturus and 17-32-38 for the moon, 
both on March 11. From the 1993 Nautical 
Almanac [61 the GHAs of both bodies are found to 
be 218” 05.9’, with declinations of 19” 12.8’ N for 
Arcturus, and 17” 03.8’ S for the moon. Knowing 
the latitude and longitude of the observer permits 
calculation of the altitude and azimuth of each 
body: 

Body Name Altitude Azimuth Zn 
1 Arcturus 51” 15.7’ 298.5” 
2 Moon 49” 54.7’ 239.8” 
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The algorithm for the special case, as given in 
the main text, is next applied to find the observer’s 
latitude and longitude from the two observed 
altitudes and the declinations of the the two bodies 
and their common GHA. 

The value of Dd = 90” - (19” 12.8’ 
- (- 17” 03.8’)) is found to be 53” 43.4’ or 
53.72333334”. The parallatic angle is next found 
from P = 180” - azi(h2,Dd,hl) to be 
111.58847130”. The latitude of the intersection of 
the constant altitude circles is then found from L 
= alt(P,dl,hl) to be north 2.25079007”. In degrees 
and minutes, this amounts to 2” 15.04740438’ or 
2” 15.0’. This is in error by 0.1 arcmin compared 
with the observer’s true latitude of 2“ 15.1’ (actual 
error is 0.0526 arcmin before rounding to tenths of 
minutes). 

The meridian angle is next found from 
t = azi(hl,dl,L) to be 35.61366409”. Because the 
bodies were observed to the west, the meridian 
angle is subtracted from the GHA of the bodies to 
yield a GHA for the observer of 182.48521060”, 
which is equivalent to the east longitude of 
177.51533080”, or 177” 30.9’ E. This matches the 
known longitude of the observer. 
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