Consider two stars with zenith distances $b=c=45^{\circ}$. Suppose that their azimuths differ by $\alpha=90^{\circ}$. Then the distance a between the stars is obtained by the cosine theorem:

$$
\begin{equation*}
\cos a=\cos b \cos c+\sin a \sin b \cos \alpha . \tag{1}
\end{equation*}
$$

As $\cos b=\cos c=\sin b=\sin c=1 / \sqrt{2}$ and $\cos \alpha=0$, we obtain $\cos a=1 / 2$, so $a=60^{\circ}$.

Now differentiate the formula (assuming $\cos \alpha=0$):

$$
(\sin a) d a=(\sin b \cos c) d b+(\cos b \sin c) d c
$$

Using (1) and refraction at 45° from the almanach $d b=d c=-0^{\prime} .9$ we obtain

$$
d a=\sqrt{2} d b=1^{\prime} .27
$$

while your rule gives $0.1 \times(60 / 5)=1^{\prime} .2$.
Another example: one star at 45°, another at zenith. Refraction correction is the same $0^{\prime} .9$, while $0^{\prime} .1 \times(45 / 5)=0^{\prime} .9$.

