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Abstract 
Mapping points on the sphere by stereographic projection to points on the plane of 
complex numbers transforms the spherical trigonometry calculations, performed in 
course of celestial navigation, into arithmetic operations on complex numbers. Rotations 
on spherical coordinate systems take a simple bilinear form. Relationships between 
circles on the sphere and circles on the complex plane are derived. The results are applied 
to the reduction of double altitude sights, altitude and azimuth determination and the 
clearing of lunar distance sights.   
 
 
Introduction 
Celestial navigation involves the measurement of altitudes of the Sun, Moon, planets or 
stars, above some reference horizon or, as in the case of longitude by lunar distances, the 
separation between a pair of such bodies. Measurements must be corrected for a number 
of effects, horizon dip, refraction, parallax etc., before being used to compute the 
observer’s true position. These sight reduction calculations generally employ formulas 
based on classical spherical trigonometry [1, 2]. Traditionally, such formulas were often 
arranged in a way that minimized the labor required to evaluate them by means of 
logarithm tables. Today this is less of a concern with simplicity, compactness and 
transparency assuming greater importance. 
 
In this paper it is shown that formulas needed to perform standard sight reductions can be 
expressed without the explicit appearance of trigonometric functions by exploiting the 
intimate connection between trigonometry and complex numbers. This is achieved by 
stereographic projection of points on the terrestrial globe onto the plane of complex 
numbers. Significant simplification arises from the fact that the two angular coordinates, 
needed specify points on the sphere, are subsumed into a single complex number and do 
not have to be carried separately through calculations. The upshot is that formulas 
obtained by the approach described here are compact and transparent in nature. Many 
scientific calculators and computer languages, Fortran, C++, Perl etc., incorporate 
complex number operations as standard features and hence evaluation is straightforward 
in practice. Moreover spherical geometry is replaced by the more broadly intuitive plane 
geometry. Results will be derived and numerical examples given for reduction of double 
altitude sights, altitude and azimuth determination, as required in Line of Position (LOP) 
navigation, and the clearing of lunar distance sights. 
 



In complex number theory, stereographic projection is used to establish an isomorphism 
between points on the complex plane and points lying on a sphere – the Riemann Sphere. 
Under stereographic projection, circles on the sphere map to circles or straight lines 
(circles of infinite radius) on the plane. It was shown in ref.[3] that if the Riemann Sphere 
is identified with the celestial sphere, then transformations between celestial spherical 
coordinates systems, e.g. equatorial to ecliptic, could be realized through arithmetic 
operations on complex numbers. Results concerning the properties of the images of great 
circles on the complex plane were also given. The results from ref.[3] that are needed 
here are summarized in the Appendix. In the present work the methods are extended to 
derive results that are applicable to problems in celestial navigation. In this case the 
terrestrial globe is identified Riemann sphere and stereographic projection maps points on 
the globe to points on the complex plane. While demonstrated specifically for celestial 
navigation, the results concerning circles on the sphere and underlying methodology in 
general may be applied to any problem in which the use of spherical coordinate geometry 
is required.  
 
 

 
Figure 1. Stereographic projection of the terrestrial globe onto the complex number plane tangent to 
the sphere at its South pole. A circle on the sphere with pole at point P maps to circle on the sphere 
with center zc . The image of the point P on the complex plane is zp and is not, in general, coincident 
with zc . 
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Stereographic projection has been applied elsewhere [4] to relate the identities of plane 
trigonometry to those of spherical trigonometry. In the field of astronautics [5], 
stereographic projection of the sphere onto the complex plane was used to derive the 
equations of motion of a rotating rigid body in terms of one complex and one real 
coordinate, . (w, )z
 
The operation of stereographic projection is depicted in Fig.1. A sphere of unit diameter 
is tangent to the complex plane at its South Pole. A straight line is drawn from the North 
Pole, , through a point, , on the surface of the sphere and extended to its intersection 
with the complex plane. The complex number lying at the intersection, , is the image of 

 under stereographic projection. If the coordinates of are latitude,

N P
pz

P P L , and longitude, 
λ , then 

 tan
4 2

i
p

Lz e λπ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (1.1) 

where the function arguments are expressed in radian measure. Under this projection the 
meridian of zero longitude maps to the positive real axis, and the South Pole of the sphere 
maps to zero on the complex plane. Longitude increases in an anticlockwise direction 
about the origin which matches the convention used in defining the arguments of 
complex numbers. Because of the singularity at , when considering positions very 
close to the North Pole, it may be convenient to consider an alternative form of the 
stereographic projection in which the roles of the North and South Poles in Fig.1 are 
reversed. In that case the projection 

90L =

 tan
4 2

i
p

Lz e λπ −⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (1.2) 

may be used where the minus sign in the argument of the exponential function has been 
introduced to preserve the property that both longitude and complex number arguments 
increase in the same sense about the origin. 
 
For navigation on or near the Earth’s surface the two forms (1.1) and (1.2) suffice for 
most practical purposes. In other applications it may be necessary to arrange for the 
singularity to be located points at other than the poles [6]. 
 
Fig.1 also shows a circle on the sphere centered on . The point  is referred to as a 
pole of this circle. Under stereographic projection the circle maps to a circle on the 
complex plane with center . Note that 

P P

cz cz zp≠ except when  lies at the North or South 
Poles of the sphere. 

P

 

Properties of Circles on the Complex Plane 
The equation 
 2 2

cz z r− =  (2.1) 
describes a circle on the complex plane with center at and radius . It can be written cz r
 2 0c c c czz z z z z z z r− − + − = . (2.2) 
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The bar over a complex number here denotes its complex conjugate. From eq.(A.4) it 
follows that the circle on the sphere with pole  and angular radius P θ  is described by the 
equation 

 
2

2 2tan
2 1

p

p

z z
z z

θ ρ
−

≡ =
+

 (2.3) 

that can be written 
 ( ) ( )( )22 21 1p p p pz z z z z z z zρ ρ− − + + + −

2 2 0ρ = . (2.4) 

 
Upon some rearrangement and comparison with eq.(2.2), this can be seen to be a circle 
with center and radius 

 
2

2

2 22 2

11 ,
1 1

p
c p

p p

z
z z r

z z

ρ ρ
ρ ρ

++
= =

− −
. (2.5) 

For any great circle 1ρ =  and when its pole lies on the equator, 1pz = , the denominators 
in eq.s(2.5) vanish yielding a circle of infinite radius. Such a circle is a meridian circle on 
the sphere and is represented by a straight line passing through the origin on the complex 
plane.  
Conversely a circle on the complex plane with center and radius is the stereographic 
projection of a circle on the sphere with pole and angular radius 

cz r

 

22 22 2

22 22 2

1 1
1 ,

2 2

1 1
1

2 2

c cc
p

c c c

c c

z r z rzz
z z z

r z r z
r r

ρ

⎧ ⎫⎛ ⎞− − − −⎪ ⎪= ± + ⎜⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

⎛ ⎞− − − −
= ± + + ⎜ ⎟

⎜ ⎟
⎝ ⎠

⎟

  (2.6) 

 
The two solutions in the above equations reflect the fact that a given circle on the sphere 
has two poles, and , lying diametrically opposite one another, and correspondingly 
two radii,

P P′
ρ and ρ′ . From the relationship between antipodal points, noted in the 

Appendix, it may be shown that, the poles and their radii satisfy the relations 
1p pz z′ = − and 1ρ ρ′ = . These conditions are evidently satisfied by eq.s(2.6). The 

eq.s(2.6) may be further verified by substituting the upper and lower sign solutions into 
eq.(2.5).  
 
The properties of great circles presented in ref.[3] are recovered by setting 1ρ = . 
 

Intersection points of two circles on the complex plane 
Expressions for the Cartesian coordinates of the intersection points of two circles on a 
plane are well known and will not be rederived here. Instead the result is recast in a form 
that facilitates its evaluation directly using arithmetic operations on complex numbers. 
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Consider two circles on the complex plane with centers ,  and radii , 
respectively. Writing

1cz 2cz 1r

2r 1c cd z z= − 2 , the intersection points of the circles are 

 ( ) ( )(1 2 2 1
1
2 c c c cz z z i z zμ ν= + + ± − )  (3.1) 

where 

 ( )

( )( )( )( )

2 2
1 2

2

22 2 2 2 2
1 1 22

1 2 1 2 1 2 1 22

2
1 4

2
1

2

r r
d

r d d r r
d

r r d r r d r r d r r d
d

μ

ν

−
=

= − + −

= + + − − − + − + −

 (3.2) 

When the argument of the square root is zero the two circles intersect at a single point 
and when it is negative they do not intersect. The individual terms in the formula (3.1) 
have a simple interpretation. The first term on the right hand side is the midpoint between 

 and . The second term represents corrections away from that point. The part 
proportional to 

1cz 2cz
μ  gives a correction in a direction parallel to a line connecting  

to and the one proportional to
1cz

2cz ν is at right angles to it. 
 

Application to Double Altitude Sights 
The position of an observer can be determined from two altitude sights of the same 
celestial body taken at different times or of two different bodies taken at roughly the same 
time. In the former case, the effect of the observer’s motion may need to be accounted 
for. This is done by applying a correction to one of the observed zenithal distances. The 
following example appears in ref.[7] (Ch.XVI, Ex.457, p.240). Two measurements are 
made of the Sun’s altitude roughly 3 hours apart. At the first observation, the Greenwich 
Hour Angle (GHA), declination and zenithal distance of the Sun are 

h m s
1

1

1

GHA 6 45 58 .06
7 51 30 .3

ZD 61 57 30
δ

=
′′= − ° ′
′′= ° ′

 

and at the second observation  
h m s

2

2

2

GHA 9 49 11 .41
7 48 37 .3

ZD 56 34 20
δ

=
′′= − ° ′
′′= ° ′

 

Each observation defines a circle on the sphere giving a Line of Position (LOP). The 
observer’s position lies at one of the intersections points of the LOP’s. From eq.s (1.1) 
and (2.3) the first set of observations defines a circle with pole and angular 
radius

1(GHA )1 1
1 1tan 0.173620 0.853988 , tan 0.600366

4 2 2
i

p
ZDz e iδπ ρ−⎛ ⎞ ⎛ ⎞= + = − − = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.  

Similarly the second set gives  
2 20.733942 0.471227 , 0.538132pz i ρ= − − =  

 5



Using eq.s(2.5) these correspond to circles on the complex plane with centers and radii  
1 1

2 2

0.325224 1.599683 , 1.454431
1.213898 0.779383 , 1.215208

c

c

z i r
z i r

= − − =
= − − =

 

With 1 2 1.209394c cd z z= − = , eq.s(3.2) give 
0.218318, 0.964517μ ν= =  

and eq.(3.1) shows that the circles intersect at 

  1

2

1.754769 1.867588
0.172382 0.153304

z i
z i
= − −
= − −

Only the former is a candidate for an observer in the northern hemisphere. From eq.(1.1) 
it is found that the observer’s latitude and longitude are 

47 21 58 N
133 12 58 W

L
λ

′′= ° ′
′′= ° ′

 

in agreement with ref. [7]. 
 
 
 

Altitude and Azimuth of a Celestial Body 
The computation of altitude and azimuth represents a transformation from the equatorial 
coordinate system, given in terms of Greenwich Hour Angle (GHA) and declination,δ , 
to the observer’s horizon coordinate system. As noted in the Appendix, rotations of 
spherical coordinate systems are realized by a class of simple bilinear transformations.  In 
the horizon coordinate system the observer effectively occupies the pole and the required 
bilinear rotation therefore maps the observer’s location to the zero on the complex plane. 
Taking into account that azimuth is measured by reference to north, the required rotation 
also places the North Pole on the positive real axis. For an observer at latitude, L , and 
longitude, λ , the coefficients for the required bilinear rotation (A.1) are 

 22 , tan
4 2

ii La e b e
λλ ππ ⎛ ⎞+− ⎜

⎝⎛ ⎞= = +⎜ ⎟
⎝ ⎠

⎟
⎠  (4.1) 

that can be easily verified to satisfy the above requirements. 
 
For a celestial body at Greenwich Hour Angle, GHA, and declination,δ , the geographic 
position (GP), i.e. the point on the Earth’s surface at which the body is at the zenith, is at 
latitude L δ= , longitude GHAλ = − corresponding to the point on the complex plane 

 (GHA)tan
4 2

iz π δ −⎛ ⎞= +⎜ ⎟
⎝ ⎠

e . (4.2) 

Performing the bilinear rotation results in a complex number, , w

 ( )T tan
4 2

i Zaz b hz w
bz a

π+ ⎛ ⎞= ≡ = −⎜ ⎟− + ⎝ ⎠
e  (4.3) 

where , h Z  are the body’s altitude and azimuth at the observer’s position. Note that 
and do not depend on the coordinates of the celestial body and hence, once 

determined, and b can be used to compute LOP’s from multiple objects. 
a b

a
The above results assume that a stereographic projection of the form (1.1) has been used. 
When the alternative stereographic projection (1.2) is used the above results become 
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( )

(GHA) 2 2 2 2tan , , tan
4 2 4 2

T tan
4 2

i i
i

i Z

Lz e a e b e

hz w e

λ π λπ δ π

π

⎛ ⎞ ⎛− −⎜ ⎟ ⎜
⎝ ⎠ ⎝⎛ ⎞ ⎛ ⎞= − = = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞≡ = −⎜ ⎟
⎝ ⎠

π ⎞+ ⎟
⎠

 (4.4) 

 

Example 
The following example comes from the seminal paper by Saint-Hilaire [8] in which an 
altitude sight is taken of the star Vega (α Lyræ) at 8 o’clock on 24 October, 1874. In its 
original form longitudes and hour angles were measured from the meridian of Paris. Here 
the same numerical values will be used but with reference to Greenwich. The assumed 
position (AP) is at latitude and longitude 

 35 30 N, 9 30 WL λ′= ° = ° ′ . 
The GHA and declination of the Sun are respectively 

GHA 62 16 00 , 38 40 13δ′′ ′′= ° ′ = ° ′ . 
 Converting these values to radian measure and substituting into eq.s (4.1) and (4.2) gives 
  0.99657 0.08281 , 1.93495 0.16078 , 0.96846 1.84204a i b i z= + = − + = − i
Applying the bilinear rotation (A.1) yields 

 . ( ) 1.210260.13412 0.35573 0.38017 iT z i e−= − =
 The altitude and azimuth can now be extracted from eq.(4.3) giving 

( )48 22 08 , 290 39 .4 69 20 .6 Wh Z′′ ′= ° ′ = ° ′ ≡ ° . 
Saint-Hilaire gives 

48 22 15 , 69 20 Wh Z′′ ′= ° ′ = °  
with the difference being due the number of significant figure carried at intermediate 
steps of his calculation. 
When the alternative stereographic projection (1.2) is employed the numerical values are 

( ) 1.21026

0.08281 0.99657 , 0.04265 0.51326 , 0.22361 0.42531
0.13412 0.35573 0.38017 i

a i b i z
T z i e−

= − − = − + = +

= − =

i
 

 

Clearing Lunar Distance Sights 
A lunar distance sight is concerned with the determining Greenwich Mean Time (GMT) 
that is subsequently used in finding longitude. The procedure is not dependent on the 
location of the observer and is largely an exercise in spherical trigonometry. As noted in 
the introduction, much of the simplicity and compactness of the foregoing results derives 
from the fact that both coordinates, L andλ , are subsumed into a single complex number. 
In the present case, without reference to a particular coordinate system, this advantage is 
not manifest. The methods can nevertheless be applied to derive formulas applicable to 
clearing lunars.  
 
For the purposes of discussion, the other body involved in the lunar distance sight will be 
taken to be a star. Assume that the celestial sphere has been mapped to the complex plane 
by stereographic projection and subsequent bilinear rotations performed in such a way 
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that the zenith is mapped to the origin, 0, and the observed position of the Moon is 
mapped to the point  that lies on the positive real axis as shown in Fig.2.  1z

 
Figure 2. Image of a spherical triangle on the complex plane used in lunar distance sight clearing. 
The origin, 0, represents the zenith, z1 the Moon and z2 the star. 

 
The observed position of the star is mapped to the point . In this configuration, the 

straight line segments
2z

10 z and 20 z  are the images of segments of great circles on the 

sphere as is the arc . Because stereographic projection is conformal, the angle 
, denoted 

1 2z z

1 20z z∠ θ , is the true angular difference between the azimuthal angles of the 
Moon and the star. Let , , M Sd h h  denote the observed lunar distance and observed 
altitudes of the Moon and star respectively. From eq.(A.4) it follows that 

 1 2

1 2

tan
1 2

i

i

z z e d
z z e

θ

θ−

−
=

+
 (5.1) 

in which 

 1 2tan ; tan
4 2 4 2

SM hhz zπ ⎛⎛ ⎞= − = −⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

π ⎞
⎟  (5.2) 

To ease the notation the absolute value brackets will be dropped in what follows  
(i.e. 1 1z z≡ , 2 2z z≡ ). 
 
Using the identity ( )1

2cos i ie eθ θθ −= + , eq.(5.1) yields 

 
2 2

2 1 2 1 2
2 2
1 2 1 2

2 costan
2 1 2 cos

z z z zd
z z z z

θ
θ

+ −
=

+ +
 (5.3) 
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and hence 

 
( )2 2 2 2 2

1 2 1 2

2
1 2

1 tan
2cos

2 1 tan
2

dz z z z

dz z
θ

+ − +
=

⎛ ⎞+⎜ ⎟
⎝ ⎠

 (5.4) 

Equations (5.3) and (5.4) can be used together for clearing lunar distance sights. This is 
best illustrated through an example. It is intriguing that in eq.(5.3) the sides of the 
triangle  all appear as the tangents of their half lengths. 10z z2

 

Example 
This example appears in ref.[9], (Ch.I, sec.20, p.27) that describes clearing a lunar 
distance using the star α Pegasi taken on 31st December, 1884 at Absarat, Nubia, Nile 
Valley. 

Apparent lunar distance, 103 26 24d ′ ′′= °  
Apparent lunar altitude, 35 37 28Mh ′ ′′= °  
Apparent stellar altitude, 40 17 24Sh ′ ′′= °  

Upon the application of corrections for horizon dip, refraction, parallax, augmentation 
etc., the geocentric altitudes are determined to be  

Geocentric lunar altitude, 36 26 01Mh′ ′ ′′= °  
Geocentric stellar altitude, 40 16 15Sh′ ′ ′′= °  

Using in eq.s(5.2) with the apparent altitudes gives 
1

2

0.513661
0.463230

z
z
=
=

 

and from the apparent lunar distance  
2tan 2 1.605615d =  

Plugging these results into eq.(5.4) yields 
cos 0.982350θ = − . 

All the corrections necessary to obtain the geocentric altitudes of the Moon and star are 
corrections in altitude only and henceθ  is unaffected by them. Applying eq.s(5.2) to the 
geocentric altitudes gives 

1

2

0.504768
0.463433

z
z
′ =
′ =

 

which, when inserted into eq.(5.3) along with the previously obtained value for cosθ , 
produces the true geocentric distance of the Moon fromα Pegasi at the time of 
measurement, 

2tan 2 1.561277
102 39 30.6

d
d

′ =
′ ′ ′′∴ = °

  

The result given in ref.[9] is . 102 39 30d ′ ′= ° ′′
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Conclusions 
The foregoing paper has described the practical application of complex analysis to 
problems encountered in celestial navigation. Some classical examples of practical 
importance are treated to demonstrate the correctness of the results presented. The 
examples encompass the most common calculations performed in the course of celestial 
navigation but are not exhaustive. The methodology lends itself to the treatment of a wide 
range of problems involving spherical coordinate systems that arise in navigation and 
astronomy. 
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Appendix 
A complex number takes the form, z x iy= + , in which x  is its real part and y is its 
imaginary part. The constant 1i = − . The same complex number can be expressed in a 
variety of equivalent forms 
 ( )cos sin iz x iy r i re φφ φ= + = + =  
where and r φ  are referred to as the modulus, and argument of and written z

( ), argz r z φ= = . 
The complex conjugate of is denoted z z and is given by 

( )cos sin iz x iy r i re φφ φ −= − = − =  
If the point on the sphere maps, under stereographic projection, to on the complex 
plane then the antipodal point

P pz
P′  maps to 1/pz pz′ = − . This relationship forms the basis 

of the proof [10] that a rotation of the Riemann sphere is represented by a bilinear 
transformation (or bilinear rotation) of the form  

 ( )
( )
( )

2 2

1T
a baz b az w

bz a b b bz a

++
= = = − +

− + − +
 (A.1) 

with inverse 

 ( )1T aw bw z
bw a

− −
= =

+
 (A.2)

  
for complex constants and .  a b
 
The composite of two successive rotations is easily obtained as 

 ( ) ( ) ( )
( ) ( )

1 1
2 2

1 2 1 2 1 2 1 21 1
2 1

1 2 1 2 1 2 1 21 1
2 2

1 1

T T

a z ba b a a b b z b a a bb z a
z

b a a b z a a b ba z bb a
b z a

⎛ ⎞+
+⎜ ⎟ − + +− +⎝ ⎠= =

⎛ ⎞ − + + −+
− +⎜ ⎟− +⎝ ⎠

 (A.3) 

In ref.[3] it was shown that if  and are points on the sphere with images and  
on the complex plane, the great circle distance, , between the points is 

1P 2P 1pz 2pz
d

 1 21

1 2

2 tan
1

p p

p p

z z
d

z z
− −

=
+

 (A.4) 

 
Relationship of Bilinear Rotations to Other Formalisms 
The complex constants and in eq.a b (A.1) can be scaled by an arbitrary real constant 
without affecting ( )T z . They can therefore always be made to satisfy the unimodular 

condition, 2 2 1a b+ = , and may then be identified with the Cayley-Klein parameters that 
arise in the  matrix representation of the Lie group SU(2) [11]. In terms of the 3-1-3 
Euler angles (

2 2×
), ,φ θ ψ  commonly used to describe rotations in 3D space, and are a b

 cos exp ; sin exp
2 2 2

a i b i
2

iθ φ ψ θ φ ψ+ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ − = − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (A.5) 
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Used in eq.(A.1), these expressions for and  apply a coordinate system rotation 
equivalently expressed in terms of 3D rotation matrices as 

a b

 
cos sin 0 1 0 0 cos sin 0
sin cos 0 0 cos sin sin cos 0
0 0 1 0 sin cos 0 0 1

x x
w y y

z z

ψ ψ φ φ
ψ ψ θ θ φ φ

θ θ

′⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′≡ = − ⋅ ⋅ − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(A.6) 

or directly in the form of an SU(2) rotation as 

 
z x iy a b z x iy a b

x iy z b a x iy z b a
′ ′ ′+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛

= ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜′ ′ ′− − − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

− ⎞
⎟
⎠

 (A.7) 

Rotations can also be performed using quaternions in which case the transformation 
equivalent to (A.6) and (A.7) is represented 
 ( ) ( ) ( ) ( )0 1 2 3 0 1 2 3ix jy kz q iq jq kq ix jy kz q iq jq kq′ ′ ′+ + = + + + ⋅ + + ⋅ − − −  (A.8) 
where the  are real numbers satisfying the condition  iq
 2 2 2 2

0 1 2 3 1q q q q+ + + =  (A.9) 
The quantities , i j ,  are non-commuting under multiplication and satisfy the 
fundamental equations . The quaternion components are related to 

and b by 

k
2 2 2 1i j k ijk= = = = −

a
 0 3 2;a q iq b q iq1= + = − +  (A.10) 
and thus may be extracted from their real and imaginary parts of upon enforcing the 
unimodular condition. Ref.[3] gives expressions for and  in terms of parameters 
commonly used in astronomical applications. The quaternion representation of these 
transformations can thus be immediately derived using eq.s

a b

(A.10). 
 
The components of the quaternion may also be represented as 

 ( ) ( )0 1 2 3 1 2 3cos sin
2 2

q iq jq kq ie je keΦ Φ
+ + + = + + +  (A.11) 

and it can be shown that the quaternion product in eq.(A.8) executes a rotation by an 
angle about the unit vector .  Φ ( )1 2 3, ,e e e
 
As only 3 parameters are required to specify a rotation in 3D space, the four quaternion 
components form a redundant set. The redundancy is removed by defining the Rodriguez 

parameters, that form the components of the Gibbs vector, ( )1 2 3, , tan
2

e e e Φ , at the cost 

introducing a singularity at . The quaternion components, satisfying the 
condition 

180Φ =
(A.9), lie on a 4D hypersphere and it has been are shown [6] that the Rodriguez 

parameters are obtained by their stereographic projection in rectangular coordinates onto 
a 3D hyperplane tangent to the hypersphere. By adjusting the point of tangency, Modified 
Rodriguez parameters [5, 6] can be defined with a singularity or elsewhere. This 
procedure of adjusting the location of the singularity is analogous to choosing the point of 
tangency of the complex plane to the terrestrial globe to be at the South Pole, eq.

360Φ =

(1.2), 
rather than the North Pole, eq.(1.1). 
 
A survey of rotational mathematics can be found in ref.[12]. 
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