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SUMMARY

Transformations between systems of spherical coordinates are obtained by
mapping the sphere by stereographic projection on to the complex number plane.
Rotations of the sphere can be identified with a particular class of bilinear trans-
formations on the complex plane. A number of results pertaining to the images of
great circles under stereographic projection is also derived.

I INTRODUCTION

Rotations and other manipulations of 2-dimensional spherical
coordinate systems of the type shown in Fig. 1 are usually performed by
first converting to Cartesian coordinates via the equations

x = cos O cos a

y = cos d sin a

z = sin 0.
Having done this the full power of 3-dimensional vector analysis is at our
disposal. Rotations are obtained by matrix multiplications (3), and other
useful operations, such as the vector cross-product, are easily performed.

However this approach was thought to be unsatisfactory in that it intro-
duces a- third coordinate to what is essentially a 2-D problem. As a con-
sequence the number of equations required for any given operation is

!
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increased which may be a serious disadvantage if the calculations are per-
formed on a machine with limited storage such as a programmable
calculator.

This paper describes a method by which the usual operations of vector
analysis can be performed in a purely 2-D framework. The spherical
coordinate system is identified with the Riemann sphere and is mapped by
stereographic projection on to the complex plane. The resulting complex
numbers when expressed in polar form clearly display the original spherical
coordinates. Almost all operations can now be performed without further
reference to the sphere and without the introduction of an unnecessary
third coordinate. In addition, some interesting properties of the images of
great circles under stereographic projection will be shown to arise as a
consequence of this approach.

2 STEREOGRAPHIC PROJECTION

Fig. 2 shows a sphere of unit diameter (the Riemann sphere) tangent to
the complex plane at the origin O; N is the point on the sphere diametri-
cally opposite O. With a given point A on the sphere we associate the
complex number A’ which lies at intersection of the ray NA and complex
plane. In this way the surface of the sphere is mapped one-to-one on to the
complex plane. The mapping can be shown to be conformal and is called
stereographic projection.

Suppose now that the sphere has a spherical coordinate system of the
type shown in Fig. 1 imposed upon it in such a way that the ‘prime
meridian’ (the meridian of zero longitude) is mapped on to the positive real
axis and the ‘south pole’ is coincident with O. From simple geometry it
follows that the point on the sphere with coordinates a, 6 maps on to the
complex number, re’® where

r = tan (%+4£) (2.1)

¢ =a. (2.2)
Evidently the image of the ‘equator’ on the sphere is the unit circle on the
complex plane.

All the terminology associated with spherical coordinate systems can
now be carried over to the complex plane. For example a great circle on
the complex plane (or simply great circle where there is no ambiguity) is
taken to mean a curve that is the image of a great circle on the sphere
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under stereographic projection. Similarly the angular distance between
two complex numbers, z; and z, is interpreted as the angle-subtended at
the centre of the sphere by the two points which have z; and z, as their
images under stereographic projection.

In the spirit of the above we consider:

2.1 Diametrically opposite points on the complex plane. Let z be any point
on the complex plane and let z* be diametrically opposite. According to

Fig. 3
argz* =argz +m
|zz*| =1

and hence

3 BILINEAR ROTATIONS ON THE COMPLEX PLANE

The term bilinear transformation is used to designate a rational function
w = w(z) of first order. Its general form is

az+b
cz+d
where a, b, ¢ and d are complex constants and ad-bc # o.

It turns out (1) that any rotation of the Riemann sphere about a diameter
can be represented by a bilinear transformation on the complex plane. The
crucial point here is that under such a rotation pairs of diametrically oppo-
site points are mapped on to pairs of diametrically opposite points. Thus if

az+b
W= —— .1
cz+d (3-1)
then from the last section we must also have
1 —(@z)+b
w  —(cl2) +d

w=T(z) =

which gives
dz-¢

w=22"°¢ (3.2)

~ —bz+a
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Using (3.1) and (3.2) it follows that

d ¢ b a
Evidently
la|=|d]
and therefore
d=\a where |A| =1.
c=—A\b

Since we can write 1/A as the quotient of two conjugate complex numbers,
1/Ah = p/fi we finally obtain

az+b
_Bz+d' (33)

The converse, that any bilinear transformation of the form of (3.3) rep-
resents a rotation of the Riemann sphere, is also true but the proof is
outside the scope of this paper. The interested reader is referred to Nevan-
linna & Paatero (1) or a similar text on complex analysis.

Bilinear transformations of .the form of (3.3) will henceforth be referred
to as bilinear rotations.

w=T(z)=

3.1 Angular distance between points on the complex plane. Let z; and z, be
two points on the complex plane. To find their angular separation, 0 say,
we make use of the bilinear rotation

zZ — 2Zh
T = —_—
(Z) Z1z+1
for which
T(Zl) =0
T(Zz) = Z_Z:_Z.l_
212 + 1

As the angular distance between the points is invariant under rotations it
follows from (2.1) that

1] 22— 21

5122 +1I (34)

0=2tan”

4 GREAT CIRCLES ON THE COMPLEX PLANE

4.1 Equation of a great circle on the complex plane. In Section 2 we noted
that the equator of the sphere is mapped on to the unit circle by stereo-
graphic projection. Since the equator can be mapped on to any great circle
on the sphere by a suitable rotation it follows that the unit circle can be
mapped on to any great circle on the complex plane by an equivalent
bilinear rotation. Bilinear transformations take circles into circles (1) and-
hence great circles on the complex plane are indeed circles. (Note that here
a straight line is regarded as a circle of infinite radius.)
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Any circle on the complex plane has an equation of the form
| 2= 2 ]2 = 92
where z is its centre and g is its radius. This can be expanded to
22— 2oz — 202 + | 2o |2 — 0* = 0. (4.1)
For any point z on a given great circle we require that the point —(1/2) also

lies on the same great circle since z and —(1/z) are diametrically opposite.
Therefore

—I_-+Z_—0+Z—O+|zo|2—92=o
zzZ Z z
or
—1— 2z~ 22+ (@*— |20/ 2z =0. (4.2)
Comparison of the coefficients in (4.1) and (4.2) yields the relation
=1+]|zf (4.3)

This shows that any great circle is uniquely determined by its centre z.
We should stress here that the centre of a great circle is a concept applic-
able only to the complex plane and has no meaningful equivalent on the
sphere.

4.2 Results concerning the centres and poles of great circles

4.2.1 Centre of a great circle defined by two points. Suppose that z; and
z, are two distinct complex numbers but that z; # —(1/2,), i.e. z; is not
diametrically opposite z,. The centre z, of the great circle on which z; and
z, lie satisfies the equations

2121 — 2021 — 2021 — 1 =0
2925 — 202 — 2923 — 1 = 0.
By eliminating Z, one obtains
_ (121 = Dz5 = (2> = Dz,
0 212, — 212, '
4.2.2 Relationship between the centre and poles of a great circle on the
complex plane. Suppose that for a given point z; we require to find the
great circle which has z, for a pole. In other words z, lies at right angles to

all points on the required circle. From (3.4) we see that the points z on the
circle must satisfy

zZ— 21
Zi1z+ 1
which after a little algebra gives
- 2 - -
z2Z—-———(nz+zZiz) -1 =o.
I — I Z1 |

This is the equation of a circle with centre
224

zp= (4-4)

I—|21|2.
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Conversely, if zj is the centre of a great circle, (4.4) may be inverted to
obtain its poles. From the above we have

292121 + 221 — zg = O.
Taking the conjugate of this equation and eliminating Z, yields
Z()Z% + 221 — 2= 0.

This quadratic has solutions
-1V I1+|z IZ
20

zZ1 =

which reflects the fact that every great circle has two poles.

4.2.3 Relationship between the inclination and radius of a great circle.
Suppose that C is a great circle of radius » and that € is the angle of
intersection of C with the unit circle (Fig. 4). The cosine rule of plane
trigonometry and (4.3) may be used to obtain

cos € = I/r.

Since stereographic projection is conformal, this result means that any
great circle on the complex plane of radius r = sec ¢ is the image of a great
circle on the sphere with inclination ¢ to the equator.

untt circle

5 COEFFICIENTS FOR BILINEAR ROTATIONS

We now derive expressions for the complex coefficients a and b of
bilinear rotations in terms of parameters which are normally used to
specify a rotation.

5.1 Rotation by an angle 0 about a diameter. As in Fig. 3, P and P’ are a
pair of diametrically opposite points on the sphere whose images under
stereographic projection are the complex numbers z; and —(1/Z,) respec-
tively. The transformation we obtain will have the effect of rotating the -
coordinate axes by an angle 0 in the positive right-handed sense about the
vector P’ P.
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The bilinear rotation
z—-z
U(z) = —
Z1z+ 1
maps z; on to o and —(1/Z;) on to .
If w = T(z) is the required transformation then
U(w) = e°U(2)
since multiplication by e rotates all points by an angle 0 in the correct
sense about the origin.
Hence

(5-1)

w = 1(z) = U 'e®U(2).
Substituting (5.1) into the above gives

0 —i0
a=-e- |z em™
i —if
b= Zl(e—z- & 2 )
. . B
= 21z;1 SIn ?

5.2 Rotations determined by two points and their images. Suppose that we
wish to find the coefficients of the bilinear rotation w = T(z) for which

wy = T(zy)
wy = T(z,)
where
22 — 24 W2 — Wy
Z1zo+ 1 wiw, + 1
We define the following bilinear rotations:
z—z
UQz) = —+
Z1z+1
which maps z; on to o
w—w
and Viw) = ———
wiw + 1

which maps w; on to o.
If A is the constant of unit modulus which satisfies the condition
V(w2) = MU(2)
we see that the required rotation is

. w=T(z) = V“IRU(z)
where

X = V(Wz)/U(Zz)
_ (w2 — wy) (Z12; + 1)
(Wiwz + 1) (22 — z1)
Therefore -

a= XVZ + W’lz-l)\._l/Z
b = wA™ — z;A%,
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5.3 Rotation determined by the ascending node and inclination of the
equator. In Fig. 5 L lies on the prime meridian and LM on the equator of
our original coordinate system. Similarly L' lies on the prime meridian and
L'M’ on the equator of our new coordinate system. Here V is the point of
intersection of L'M’ with LM and is thus the ascending node of the new
equator with respect to the first. As indicated ¢ is the angle of intersection
of LM and L'M’ at V and Q, Q' are the angles subtended at the centre of
the sphere by the pairs of points L, V and L', V respectively.

From the figure we see that the original coordinates of the point o are

-
a; = 0, 61———
2

and that in the new system they are
1 -
aj=—+ Q508 =—+ =
1 5 > V1 2
The original coordinates of the point o’ are
n -
a0Q=—+Q;=—+c¢.
2 2 s V2 2
and in the new system they are
aj = 0; 85 = T
2 5

By finding the images of these points under stereographic projection we
see that we require a bilinear rotation which maps

o on to tan -& 2 @ -3

iQ +

€ ELA)
tan -2 € 2’0n to o.
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Using the results of the previous section we easily obtain

2

a=e
b= tan-%—c"(:z&“ﬁtgl).

5.4 Example (2). For convenience we will work in degrees for this

example. The coordinates of a point A are a = 75°, & = 15°. Find the

coordinates of A in a system related to the original by the parameters

g =235°
Q = 215°
Q" = 115°

Solution. From the last section the coefficients of the required bilinear
rotation are

a = e = 0.6428 — 0-7660i
b = 0-2080e'7>) = 0-0538 + 0-2009i.
Under stereographic projection the point o = 75°, & = 15° is mapped to
z = 1-3032¢'") = 0-3373 + 1-2588i.
Substituting these values into (3.3) we obtain
T(z) = 1-4274 — 0-9195i = 1:6979¢
By taking the inverse of (2.1) and (2.2) we find that in the new coordinate
system

i(=32-79°)

o' = 327-21°, &' = 29-01°.

6 SPHERICAL TRIGONOMETRY

We now demonstrate that fundamental formulae of spherical trigon-
ometry can be derived from plane trigonometry and previous results in this

paper. '

v
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Fig. 6 shows a great circle on the complex plane with centre z; and radius
o where 0® = |zo[? + 1. P and Q are distinct complex numbers lying on the
great circle. We note that the curvilinear triangle OPQ is the image of a
spherical triangle under stereographic projection as each of its sides is the
arc of a great circle on the complex plane.

The cosine rule of plane trigonometry gives
e — lzo” + |PI®

COS =
¢ 2Pl

or
1+ |P?
2|Ple
where sin P conventionally denotes the sine of interior angle between sides

of the triangle which meet at P.
Similarly

sin P =

and hence

. (6.1)

(++ 1) (7 for)

If the angular distance between the origin O and P is 6, then (3.4) gives

0
|P| = tan -2
2
which yields
: 2| P|
Sin Op = I—-ITI)IE . (62)

Note that 6, is the angle subtended at the centre of the sphere by the
corresponding side of the spherical triangle.

Similarly if 8, is the angular distance between the origin and Q it follows
that

Hence combining (6.1), (6.2) and (6.3) we have
sin P sin g
sin @,  sin 0,
The conformality of stereographic projection now guarantees that for
any spherical triangle ABC,
sinA _sinB _sinC
sina sinb  sinc
where we have used the usual conventions to denote the sides and angles of
a spherical triangle.
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Evidently the other fundamental formulae of spherical trigonometry can
be derived in a similar fashion.

7 CONCLUSION

In the foregoing paper we have demonstrated the usefulness of stereo-
graphic projection in treating problems encountered in the use of spherical
coordinate systems.

Other problems of practical importance can also be dealt with by a
similar approach. For example the effect on the observed coordinates of
stars due to the aberration of light can be treated by a combination of
bilinear rotations and non-analytic transformations of the complex plane.
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