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Mapping points on the Riemann sphere to points on the plane of complex numbers by stereo-

graphic projection has been shown to offer a number of advantages when applied to problems

in navigation traditionally handled using spherical trigonometry. Here it is shown that the same

approach can be used for problems involving great circles and/or rhumb lines and it results

in simple, compact expressions suitable for efficient computer evaluation. Worked numerical

examples are given and the values obtained are compared to standard references.
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1. INTRODUCTION. Many of the problems that arise in celestial navigation can be

cast in the form of a rotation from one spherical coordinate system into another. For exam-

ple standard Line of Position (LoP) navigation can be seen as a transformation of the Right

Ascension and declination coordinates of a celestial body into the observer’s local altitude

and azimuth.

A number of equivalent formalisms are available to perform rotations in three-

dimensional (3D) space. These include 3D rotation matrices, typically specified in terms

of Euler parameters, quaternion methods and bilinear transformations of complex numbers

whose coefficients are identified with the Cayley-Klein parameters (Arfken and Weber,

1995). For a survey of these methods see Heard (2006) and Stuart (2009a). Mapping points

on the sphere to numbers on the complex plane by stereographic projection allows practical

use to be made of the last of these formalisms for navigational purposes and was explored

in a prior article (Stuart, 2009a). Key results applicable to LoP navigation are given in the

Appendix. The same approach has been found to be applicable in other related disciplines

(Stuart, 1984; Stuart, 2009b).

An alternative framework that uses stereographic projection to map problems in

spherical trigonometry to plane trigonometry has been given by Donnay (1945).

In this paper navigational problems involving great circles and rhumb lines are con-

sidered as a natural by-product and extension of the complex number methods previously

described.
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Under stereographic projection all circles on the sphere map to circles on the complex

plane but great circles form a subclass that is subject to additional constraints with the con-

sequence that the characteristics of any great circle are completely and uniquely specified

by the complex number lying at its centre.

A rhumb line or loxodrome on the sphere maps to a logarithmic spiral on the complex

plane whose algebraic form is known and can be exploited in rhumb line or Mercator

sailing problems. It should be noted that stereographic and Mercator projections are closely

related. Applying the (complex) logarithm function to points on a complex plane mapped

from the surface of a sphere by stereographic projection generates a Mercator projection

with meridians represented by straight lines parallel to the real axis and parallels of latitude

running parallel to the imaginary axis.

While not offering any clear advantages for manual calculations, the approach described

here produces compact formulae that are suitable for efficient computer implementation.

Complex numbers and operations on them are native to many scientific computer lan-

guages, FORTRAN, C++, PERL, Mathematica etc. Calculations performed in this way

possess the following advantages:

• The two spherical coordinates (latitude/longitude; right ascension/declination; alti-

tude/azimuth) are encapsulated into a single complex number and do not need to be

carried separately through the calculations.

• Results from spherical trigonometry are replaced by purely algebraic formulae

which tend to be compact and efficient to code and evaluate.

• Ambiguities as to the quadrant in which a particular angle lies are eliminated.

• Circles on the sphere map to circles on the complex plane.

In the present work stereographic projection is defined using the geometric convention

that the complex plane is tangent to the south pole of the sphere with a point at latitude, L,

and longitude, λ, mapping to

(L, λ) → z = tan

(

π

4
+

L

2

)

eiλ (1)

The inverse transformation is

L = 2 tan−1 |z| −
π

2
; λ = arg z (2)

Corresponding results for the case where the complex plane is tangent to the north pole are

obtained by changing the signs of both L and λ.

Following the notation of Nevanlinna and Paatero (1969) and Stuart (1984, 2009a,

2009b), the complex conjugate of z will be denoted by z̄.

2. GREAT CIRCLES ON THE COMPLEX PLANE. The general properties of great

circles on the complex plane were derived and described in (Stuart, 1984) and are

summarised here.

A great circle on the Riemann sphere under stereographic projection maps to a circle on

the complex plane. The image, zp , of a pole of the great circle on the sphere is related to its
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centre, zc, on the complex plane by

zc =
2zp

1 −
∣

∣zp

∣

∣

2
(3)

and its radius, r, satisfies the relation

r2 = 1 + |zc|
2 (4)

Points z lying on a great circle therefore satisfy an equation of the form

zz̄ − z̄cz − zcz̄ − 1 = 0 (5)

Conversely the images of the poles of the great circle are

zp =
−1 ± r

z̄c

(6)

Hence as noted in the introduction a great circle is fully specified by the point zc at

its centre.

The great circle distance, D, between points represented by z1 and z2 is

D = 2 tan−1

∣

∣

∣

∣

z2 − z1

z̄1z2 + 1

∣

∣

∣

∣

(7)

The following sections give expressions for the centres and other characteristics of great

circles on the complex plane that are applicable to problems in navigation.

Figure 1 shows the stereographic projection of the great circle running through Yoko-

hama (YK) and San Francisco (SF) from the sphere onto the plane of complex numbers.

The Earth is represented by a sphere of unit diameter with the plane tangent to it at the

South Pole. Each point on its surface is mapped to the plane by drawing a line from the

North Pole (N) through that point and continuing it on until it intersects the plane. One

of the two poles of the great circle ( p1) is visible. The poles lie 90◦ from each point on

the great circle. The northern vertex (v1) or point of greatest latitude is also shown. The

images under stereographic projection of the points SF, YK, p1, v1 are labelled zSF, zYK,

zp1
, zv1

respectively. The centre of the great circle on the complex plane is zc and does not,

in general, correspond to the image of either of its poles. As is evident from the figure the

centre of the great circle and the images of its poles and vertices all lie on a straight line

passing through the origin on the complex plane.

2.1. Great Circle passing through two Points z1 and z2. Since z1 and z2 both satisfy

Equation (5) eliminating z̄c between the two equations gives

zc =

(

|z1|
2 − 1

)

z2 −
(

|z2|
2 − 1

)

z1

z̄1z2 − z̄2z1

(8)
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Figure 1. Stereographic projection of the great circle running through Yokohama (YK) and San Francisco (SF)

from the sphere onto the plane of complex numbers.

2.2. Great Circle Equidistant from two Points z1 and z2. From Equation (7) points z

lying on the great circle equidistant from z1 and z2 satisfy the condition that

∣

∣

∣

∣

z − z1

z̄1z + 1

∣

∣

∣

∣

=

∣

∣

∣

∣

z − z2

z̄2z + 1

∣

∣

∣

∣

(9)

This may be rearranged to yield an equation of the form of Equation (5) representing a

circle with centre

zc =

(

|z1|
2 + 1

)

z2 −
(

|z2|
2 + 1

)

z1

|z1|
2 − |z2|

2
(10)

2.3. Great Circle passing through a Point z1 at an Angle C. The centre, zc, of a great

circle passing through the point z1 with direction C measured eastward from north lies on

a line drawn through z1 at right angles to the direction C. It therefore takes the form

zc = z1 + kiz1eiC (11)

for some real constant k.

Setting z = z1 in Equation (5) and using the expression above for zc allows k to be

determined yielding

zc = z1

e−iC + eiC |z1|
−2

e−iC − eiC
=

iz1

2 |z1|

{

|z1|
−1 eiC + |z1| e−iC

sin C

}

(12)

2.4. Point where a Great Circle crosses a Meridian. When plotting a great circle

track on a chart it can be convenient to compute points at specified values of longitude.



622 ROBIN G. STUART VOL. 70

The point zλ at which a great circle crosses a particular meridian of longitude, λ, can be

calculated by writing z = |z| eiλ in Equation (5) and solving for |z| ≥ 0. The result is

zλ =

{

Re
(

zce−iλ
)

+

√

1 + Re
(

zce−iλ
)2

}

eiλ (13)

2.5. Points where a Great Circle crosses a Parallel. Similarly the point zL where

a great circle crosses parallel of latitude, L, can be found using Equation (5) with the

constraint that |zL| = tan
(

π
4

+ L
2

)

which gives

zL = z1

{

1 ± i

√

|zL|
2 / |z1|

2 − 1

}

(14)

in which z1 = (|zL|
2 − 1)/(2z̄c). Valid solutions exist provided r − |zc| ≤ |zL| ≤ r + |zc|

where r =
√

1 + |zc|
2.

2.6. Vertices of a Great Circle. The vertices of a great circle on the complex plane

lie on a line drawn through the centre of the circle, zc, and the origin. Any point on the line

can be generated by scaling zc by a real constant. From simple geometry it then follows

that the vertices of the circle, zv , lie at the points

zv = zc

(

1 ±
r

|zc|

)

= zc

(

1 ±

√

1 + |zc|
−2

)

(15)

2.7. Vertices of a Great Circle passing a Point and Subject to a Limiting Parallel.

Under composite sailing separate great circle tracks are constructed passing through the

departure and destination points and tangent to some limiting parallel of latitude. A parallel

sailing track is followed between the points of tangency or vertices of the great circles.

It was shown in Stuart (1984) that the radius, r, of a great circle on the complex plane is

equal to the secant of its inclination to the equator, ε, which is identical to the latitude of the

great circle’s vertex. It follows from Equation (15) that the centre, zc, of the required great

circle satisfies the condition |zc| = tan ε and passes through either the point of departure

or destination denoted by X which maps to zX on the complex plane. These requirements

along with Equation (5) give

zc = z1

{

1 ± i

√

|zc|
2 / |z1|

2 − 1

}

(16)

where z1 = (|zX |2 − 1)/(2z̄X ).

Note that there are two possible great circles that satisfy the requirements; one with ver-

tex to the east of zX and the other to the west. With the mapping of Equation (1) when X and

the vertex are in the same hemisphere the upper (lower) sign in Equation (16) corresponds

to a vertex to its east (west). This is reversed when they are in different hemispheres.

From Equation (15) and the requirement that |zc| = tan ε the vertex of the great circle on

the limiting parallel is

zv = zc (1 ± csc ε) (17)

where the upper (lower) sign applies to parallels in the northern (southern) hemisphere.
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From Equation (16) it also follows that the difference in longitude between X and the

nearer vertex is

DLo = arg

(

1 + i

√

|zc|
2 / |z1|

2 − 1

)

= tan−1

√

|zc|
2 / |z1|

2 − 1 (18)

2.8. Example. As shown in Figure 1, a great circle course runs from Yokohama,

Japan 35◦28′ N, 139◦41′ E to San Francisco, USA 37◦49′N, 122◦25′W. Where does the

vertex of this great circle lie? If composite sailing is desired that does not exceed 45◦N,

what are the beginning and end points of the parallel track?

The positions of Yokohama and San Francisco are mapped to complex numbers zYK and

zSF respectively using Equation (1) yielding respectively

zYK = −1·479389 + 1·255353i; zSF = −1·094663 − 1·723804i

From Equation (8) the centre of the great circle on the complex plane passing through these

two points is

zc = −1·114150 − 0·211900i

The vertex is found from Equation (17) to be

zv = −2·599553 − 0·494409i

which by means of Equation (2) is found to correspond to the position 48◦35·8′ N,

169◦13·9′W on the sphere.

A composite sailing in which the latitude does not exceed 45◦ N requires finding a great

circle passing Yokohama with a vertex at 45◦ N and a similar one passing through San

Francisco.

Making the substitutions zX = zYK and |zc| = tan 45◦ in Equation (16) and selecting the

upper sign as is appropriate for a vertex to the east gives the centre of the required great

circle passing through Yokohama as

zc = −0·997248 − 0·074135i

By the application of Equation (17) and using the upper sign to select the northern

hemisphere vertex

zv = −2·407570 − 0·178978i

corresponding to 45◦ N, 175◦44·9′ W

The analogous calculation applied to San Francisco gives

zc = −0·948366 − 0·317178i

zv = −2·289558 − 0·765735i

with the vertex at 45◦ N, 161◦30·5′ W.
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3. GREAT CIRCLE SAILING.

3.1. The Direct Problem. The aim is to find the point, zD, lying at a distance, D, from

an initial point, z1, along a great circle course with initial bearing, C, measured eastward

from north. The transformation

T (z) =
z − z1

z̄1z + 1
(19)

describes a rotation of the sphere (Nevanlinna and Paatero, 1969; Stuart, 2009a) that maps

the point z1 to the zero and the north pole, represented by infinity on the complex plane

to the point 1/z̄1 which defines the direction from which courses are specified. Under this

transformation great circles through the point z1 become straight lines through the origin.

A straight line drawn from zero to the point

z2 = tan
D

2
eiC z1

|z1|
(20)

is a segment of a great circle track from z1 to a point at a distance of D (radians) and bearing

C measured eastward from north. In the original coordinate system prior to rotation this

point is

zD = T−1 (z2) = z1

(

1 + |z1|
−1 eiC tan D

2

1 − |z1| eiC tan D
2

)

(21)

3.2. The Inverse Problem. Conversely the great circle distance D and bearing C of

the point z2 from z1 is

D = 2 tan−1 |T (z2)|

C = arg (z̄1T (z2)) = arg (T (z2)) − arg (z1)
(22)

3.3. Example. Find a number of points along a great circle track from latitude 38◦N,

longitude 125◦W when the initial great circle course angle is 291◦.

The initial point on the complex plane is z1 = −1·176006 − 1·679511i giving

|z1| = 2·050304

eiC = −0·358368 − 0·933580i

Selecting the desired values of the distance, D, and successively using Equation (21) to find

zD and Equation (2) to determine the corresponding latitude and longitude gives

D(n.m.) 300 600 900 3600

zD −1·283622–1·488293i −1·354979–1·296712i −1·394770–1·111377i −1·065272–0·016579i

Latitude 36·1◦ N 33·9◦ N 31·4◦ N 3·6◦ N

Longitude 130·8◦ W 136·3◦ W 141·5◦ W 179·1◦ W

The results agree with those in Bowditch (2002. Section 2407, Example 2).

4. RHUMBLINE SAILING. A rhumbline or loxodrome is a track of constant head-

ing and therefore cuts each meridian that it crosses at a constant angle before terminating

at the poles. When treating an ellipsoidal Earth it is common practice, see for example
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Bowditch (2002) to incorporate the eccentricity, e, into expressions for the so-called

meridional parts but neglect it when calculating meridional arc lengths. While not strictly

correct (Earle, 2005) this practice will be followed here. It is found that this approxima-

tion introduces a maximum error of 17 nm or 0·3% of the total meridional arc length. The

exact treatment on the ellipsoid by classical methods is given by Williams (1998) and

Tseng et al. (2012).

To incorporate the eccentricity define a modification to Equation (1)

(L, λ) → ẑ =

[

1 − e sin L

1 + e sin L

]
e
2

tan

(

π

4
+

L

2

)

eiλ (23)

From an operational standpoint the approximation described above amounts to distinguish-

ing between z and ẑ only when logarithms are present or equivalently where meridional

parts are concerned.

Under stereographic projection meridians are radial lines on the complex plane and

the loxodrome with course heading, C, passing through the point z1 with longitude λ1 is

therefore a logarithmic spiral which as a function of the longitude, λ, takes the form

ẑ = ẑ1e(cot C+i)(λ−λ1) (24)

4.1. The Direct Problem. It is required to find the point z2 reached by starting at

point z1 and following a rhumb line course with bearing, C, and distance D. Let z1 and

z2 represent points with latitude and longitudes (L1, λ1) and (L2, λ2) respectively. The

meridional arc length of the track is

L2 − L1 = D cos C (25)

where the left hand side of Equation (25) is exact on a sphere but is an approximation on

an ellipsoid. It follows that

|z2| = tan

(

π

4
+

L1 + D cos C

2

)

=
|z1| + B

1 − |z1| B
(26)

where B = tan
(

D cos C
2

)

and L2 can then be obtained using

L2 = 2 tan−1 |z2| −
π

2
(27)

Further

∣

∣ẑ2

∣

∣ = |z2|

[

1 − e sin L2

1 + e sin L2

]
e
2

(28)

Solving Equation (24) for the difference in longitude between z2 and z1 yields

λ2 − λ1 = ln

∣

∣

∣

∣

ẑ2

ẑ1

∣

∣

∣

∣

tan C (29)

and plugging this back into Equation (24) gives the general result

ẑ2 = ẑ1

∣

∣

∣

∣

ẑ2

ẑ1

∣

∣

∣

∣

1+i tan C

(30)
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Within the approximation discussed earlier this is

z2 = z1

∣

∣

∣

∣

z2

z1

∣

∣

∣

∣

∣

∣

∣

∣

ẑ2

ẑ1

∣

∣

∣

∣

i tan C

= z1

∣

∣

∣

∣

z2

z1

∣

∣

∣

∣

exp

(

i tan C ln

∣

∣

∣

∣

ẑ2

ẑ1

∣

∣

∣

∣

)

(31)

4.2. The Inverse Problem. The rhumbline bearing, C, from point z1 to z2 follows from

simple geometry of their images ln ẑ1 and ln ẑ2 under Mercator projection and is

C = arg ln
ẑ2

ẑ1

(32)

The rhumbline distance, D, from z1 to z2 can be obtained from Equation (25) which may

be recast as

D = 2

(

tan−1 |z2| − tan−1 |z1|

cos C

)

= 2 sec C tan−1

(

|z2| − |z1|

1 + |z1| |z2|

)

(33)

4.3. Example. A ship at 75◦31·7′ N, 79◦08·7′ W, steams 263·5 miles on course 155◦.

Find the latitude and longitude of the point of arrival.

The departure point on the complex plane from Equation (1) is z1 = 1·483278 −

7·735268i leading by the analogue of Equation (28) to
∣

∣ẑ1

∣

∣ = 7·825203. Using Equations

(26), (27) and (28) with B = −0·034748 gives

L2 = 71◦32·9′W
∣

∣ẑ2

∣

∣ = 6·117479

From Equation (31) the point of arrival on the complex plane is z2 = 1·844419 −

5·873752i corresponding to 71◦32·9′ N, 72◦34·0′ W which agrees with Bowditch (2002,

Section 2416, Example 2) up to the level of rounding error in longitude present in that

reference.

5. CONCLUSIONS. It has been demonstrated that mapping points on the sphere to

points on the complex plane by stereographic projection leads to simple compact solutions

to a variety of navigational problems. This work focussed on the problems involving great

circles or rhumb lines. The formulae obtained are compact and straightforward to evaluate

in practice. Comparison of worked examples to standard references provides verification

of the correctness of the expressions obtained.
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APPENDIX. LINE OF POSITION NAVIGATION.

LoP navigation involves comparing the observed altitude of a celestial body to a calculated

altitude for a reference or Assumed Position (AP) at latitude, λ, and longitude, L. Noting

that the body’s Greenwich Hour Angle, GHA, and declination, δ, are related to its altitude,

h, and azimuth, Z, by a coordinate rotation, Stuart (2009a) derived expressions for the latter

in the form of a bilinear or Möbius transformation

T (z) =
az + b

−b̄z + ā
(A1)

of points on the complex plane. This result can be written intuitively and succinctly as

follows. Let zGP be the image on the complex plane of the geographic position of the

celestial body and zAP be the image of the observer’s assumed position

zGP = tan

(

π

4
+

δ

2

)

e−i (GHA); zAP = tan

(

π

4
+

L

2

)

ei λ.

The required altitude and azimuth can be found from

tan

(

π

4
−

h

2

)

eiZ = T (zGP) = e−iλ

(

zGP − zAP

z̄APzGP + 1

)

(A2)

and hence

h =
π

2
− 2 tan−1 |T (zGP)| ; Z = arg T (zGP) (A3)

Alternatively in terms of the three quantities, Local Hour Angle, LHA, latitude, L, and

declination, δ, normally used as input into LoP calculations, this may be written

tan

(

π

4
−

h

2

)

eiZ = T (zGP) =
|zGP| e−i(LHA) − |zAP|

|zGP| |zAP| e−i(LHA) + 1
(A4)

where

|zGP| = tan

(

π

4
+

δ

2

)

; |zAP| = tan

(

π

4
+

L

2

)

and

LHA = GHA + λ.


