Recent occultation From: Dave Walden Date: 2022 Jun 15, 04:02 -0700

It's 13 June 2022, 2h 20m 8.1s UT. You see delta Scorpii (Dschubba) disappear behind the moon. At 3h 5m 30s, you see it reappear. Where are you?

http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=Dschubba del Sco - Spectroscopic Binary

ICRS coord. <i>(ep=J2000) :</i>	16 00 20.00528 -22 37 18.1431 (Optical)
Proper motions mas/yr:	-10.21 -35.41
Radial velocity / Redshift / cz :	V(km/s) -6.00
Parallaxes (mas):	6.64 [0.89] A
Fluxes (8):	V 2.32 [~] C

1 - Paper drawing Intersection of Cylinder and Sphere (no refraction) to get graphical approximate position

	02h20m08.1 s	SINGLE CURVE	03h05m30 s	SINGLE CURVE
-40.0		50.0 96.1	-75.0	57.1 80.4
-35.0		46.4 90.7	-70.0	51.0 78.2
///		///	-65.0	46.7 76.8
-10.0		40.3 77.2	-60.0	43.2 75.6
-05.0		<mark>40.2 75.3</mark>	-55.0	<mark>40.2 74.5</mark>
0.00		<mark>40.5 73.5</mark>	-50.0	37.7 73.4
05.0		41.1 71.9	-45.0	35.4 72.3
///		///	///	///
40.0		57.9 64.2	75.0	50.2 28.8

(2) First numerical Approximation from AP1 on Ellipsoid with refraction (zero altitude)

Starting from AP1: N40°12' / W074°30'

imm. : immersion (star disappears behind Moon) em. : emersion (star again visible) In the "Local LAT/LON Coordinates system" with AP1 = (0,0) and LAT/LON units in degrees : a and b : Coefficients of straight line (1) (ax+by-ab=0) of equal immersion times equal to 02h20m08.1 s c and d : Coefficients of straight line (2) (cx+dy-cd=0) of equal emersion times equal to 03h05m30.0 s ΔX and ΔY are the local coordinates (i.e. centered onto AP1) of the intersection of (1) and (2) . Therefore the intersection of (1) and (2) is an improved position derived from AP1.

			N41°12′	imm. 02h19m18.8s	a = 0.46179
			W074°30′	em. 03h06m15,5s	b = 7.69091
N4012'	imm.02h20m44,9s	c = 0.27663	N40°12′	imm. 02h20m50.4s	$\Delta X = 0.06741^{\circ}$
W075°30′	em. 03h02m23.6s	d = -0.10296	W074°30′	em. 03h05m12.6s	$\Delta Y = 0.45774^{\circ}$

From AP1, compute AP2 with:

- LAT(AP2) = LAT(AP1) + Δ Y = N 40°39.464'
- LON(AP2) = LON(AP1) + ΔX = W 074°34.045'

Numerical check: at AP2, immersion UT = 02h20m05,9s / emersion UT = 03h05m31.8s (Benchmarks: imm. at 02h20m08.1s and em. 03h05m30,0s)

(3) Second numerical Approximation from AP2 on Ellipsoid with refraction (zero altitude)

Starting from AP2: N40°39.464' / W074°34.045'

imm. : immersion (star disappears behind Moon) em. : emersion (star again visible) In the "Local LAT/LON Coordinates system" with AP2 = (0,0) and LAT/LON units in degrees : a and b : Coefficients of straight line (1) (ax+by-ab=0) of equal immersion times equal to 02h20m08.1 s c and d : Coefficients of straight line (2) (cx+dy-cd=0) of equal emersion times equal to 03h05m30.0 s ΔX and ΔY are the local coordinates (i.e. centered onto AP2) of the intersection of (1) and (2) . Therefore the intersection of (1) and (2) is an improved position derived from AP2.

			N 41°39.464′	imm. 02h18m39.8s	a = -0.02555
			W074°34.045′	em. 03h06m30,8s	b = -0.25287
N 40°39.464'	imm.02h19m57,2s	c = -0.03051	N 40°39.464′	imm. 02h20m05.9s	$\Delta X = 0.00172^{\circ}$
W075°34.045′	em. 03h02m47.5s	d = 0.01096	W074°34.045′	em. 03h05m31.8s	$\Delta Y = -0.02572^{\circ}$

From AP2, compute AP3 with:

- LAT(AP3) = LAT(AP2) + Δ Y = N 40°37.921'
- LON(AP3) = LON(AP2) + ΔX = W 074°34.148'

Numerical check: at AP3, immersion UT = 02h20m08.3s / emersion UT = 03h05m29.9s (Benchmarks: imm. at 02h20m08.1s and em. 03h05m30,0s)

No need for further refinement.

Solution: N 40°37.9' / W 074°34.1' on the WGS84 Ellipsoid with refraction and at Sea Level