Reference Documents:

Ref1 : Andrew T. Young https://aty.sdsu.edu/explain/atmos refr/bending.html
Ref2 : André Danjon Astronomie Générale - 1980-§81 pp 161, 162
Both references indicate that actual values are difficult to predict under all possible meteorological conditions and that the following formulae are only approximate and apply to horizontal rays or nearly so for "standard" conditions.

1 - Ref1

1.1 - Ref1 mentions the temperature vs. altitude lapse rate " \boldsymbol{r} " as a key factor governing ray bending radius \boldsymbol{R}. With $\boldsymbol{R o}_{\mathbf{o}}$ being the Earth Radius and with $\boldsymbol{\gamma}$ in ${ }^{\circ} \mathrm{K} / \mathrm{m}$ and, Ref1 also indicates:

$$
\text { (1) } \mathrm{R}_{0} / \mathrm{Rt}_{\mathrm{t}}=k \cong(0.034-v) / 0.154
$$

1.2 - Ref1 also lists the following "standard values":
1.2.1 - For the International Standard Atmosphere (ISA) $\boldsymbol{\gamma}=\mathbf{0 . 0 0 6 5}{ }^{\circ} \mathrm{K} / \mathrm{m}$. Hence $\mathrm{k} \cong 0.179$ and $\mathrm{R}_{\mathrm{o}} / \mathrm{Rt}_{\mathrm{t}} \cong 5.6$
1.2.2 - For (adiabatic) free convection, $\boldsymbol{v} \cong 0.0106{ }^{\circ} \mathrm{K} / \mathrm{m}$. Hence $\mathrm{k} \cong 0.152$ and $\mathrm{R}_{0} / \mathrm{Rt}_{\mathrm{t}} \cong 6.6$.

Ref1 also indicates here:
Ref1 quote: "This is close to the condition of the atmosphere near the ground in the middle of the day, when most surveying is done; the value calculated is close to the values found in practical survey work" Ref1 Unquote

2 - Ref2

With Ve being the Vertical elevation in arc minutes of a point at distance \mathbf{D} in NM, Ref2 gives this simple formula:
(2) $\mathrm{Ve}^{\prime}=\mathrm{D}_{\mathrm{nm}} * \mathrm{k} / 2$

3 - Application to the Horizon Dip at sea.

If no refraction, the sea Horizon Dip (in arc minutes) seen from a Navigator at height " h " (in meters) above the sea is:
(3) Dip'Unrefracted $=1.925 \sqrt{h_{m}}$

Alongside the surface of a spherical Earth, the curved distance in NM between the Observer and the unrefracted horizon is equal to the unrefracted Dip in arc minutes, a value which is also extremely close to their straight-in distance in NM.

Hence we can use the "upwards" additive term: Ve' = Dip'Unref * k/2 to correct Formula (3) into the refracted Dip.
Ref2 indicates that for all practical purposes, for Celestial Navigation, $\mathrm{k}=0.16$. Since Dip $_{\text {Refracted }}=$ Dip unrefracted $(\mathbf{1}-\mathbf{k} / \mathbf{2})$,

$$
\text { (4) } \text { Dip' }_{\text {Refracted }}^{\prime}=1.771 \sqrt{\mathrm{~h}_{\mathrm{m}}}
$$

which is exactly the quantity tabulated in the French Éphémérides Nautiques for the Horizon Dip at sea.

4 - Numerical application:

From Allauch ($\mathrm{N}_{3} 3^{\circ} 31^{\prime} 08^{\prime \prime} / E 005^{\circ} 29^{\prime} 10^{\prime \prime} / 310 \mathrm{~m}$ AMSL) Dip' Unrefracted $=33.9^{\prime}$ and Dip' ${ }^{\prime}$ Refracted $=31.2^{\prime}$. From there the unrefracted Pic du Canigou ($N 42^{\circ} 31^{\prime} 08^{\prime \prime} / E 002^{\circ} 27^{\prime} 24^{\prime \prime} / 2,784 m$ AMSL) is 142 NM away at 38.6^{\prime} below the local horizon.

The Vertical elevation due to refraction being equal to 11.4', the refracted Pic du Canigou can then be seen from Allauch at 27,2' below the local horizon at @ 4.0' above the refracted maritime horizon, e.g. at 4.3^{\prime} on Nov. $1^{\text {st }}, 2005$ with a picture of the setting Sun taken at 16 h 30 m 47.6 s UT in Azimuth 250.7520° just behind Pic du Canigou.

