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Preface

The invention of the electronic pocket calculator brought the slide rule, once an indispensable tool in
many professions, to a very quick end. Only in one niche have mechanical computing devices been able
to assert themselves to this day, namely in aviation, although this is an area that embodies technical
progress like hardly any other. In the cockpit of a modern commercial aircraft, however, the old dead
reckoning computers no longer have any reason to exist. Even in General Aviation, the mechanical
computer has a shadowy existence, which is related to the triumph of satellite navigation. However, these
old parts are still indispensable for the navigation training of pilots and will therefore continue to be
produced. This is certainly also due to the fact that the mechanical solutions for the spatial problems
occurring here are particularly demonstrative. This is why the electronic navigation computers, which
came onto the market very quickly, were not really able to establish themselves.

That the extraordinary variety of the mechanical navigation computers invented in the course of the
relatively short history of aviation might not be too well known, led me to the idea of putting these pages
on the net. Perhaps in this way | can save some of the knowledge about historical aviation computing
technology from being forgotten. Above all, | wanted to pay tribute to the human ingenuity that is
particularly evident here.

This is not a reading material in the conventional sense, but rather a reference work. It is also not a
textbook, but is aimed at readers who already have basic knowledge of flight navigation. In many
thousands of flying hours | have gained practical experience, so that | can judge such products regarding
their suitability in practice. Regardless of my personal evaluation | wanted to set a monument to the
numerous inventors. Unfortunately, | do not know all their names. | am always grateful for hints at
necessary additions, errors or mistakes (e-mail: info@flight-computer.de).

It is due to the nature of the task that the calculation methods are sometimes the same or at least
similar, which does not necessarily mean that the inventors have been sloppy with intellectual property.
With obvious solutions it is not unlikely that they have been found several times and that the creators have
worked independently of each other.

To make the descriptions as simple and intelligible as possible, | almost always work with examples.
These are chosen arbitrarily, which is not explicitly mentioned in the text. In order to be able to estimate
the accuracy of the calculation method, the analytically found exact results are also given. These are
indicated by decimal places.

The methods are primarily described without comment and the judgement about their utility value,
originality and suitability in practice is left to the reader. Rare exceptions to this rule have been necessary
for scientific reasons. The order of the individual chapters is purely arbitrary and in no way an expression
of my appreciation.

I am fully aware that many readers who are interested in such a special topic may want to know more
about the inventors, how the various inventions are linked to each other and what the influence of
technical progress was on the design of these computing devices. Unfortunately, | have to disappoint
these readers. Since | am no science historian, it was neither my intention nor am | able to write about it.
Therefore, no historical details about individual products and their manufacturers can be found here, nor
information about distribution and production figures or biographical information about their creators. For
readers who want to learn more about the the very interesting history of navigation computers, |
recommend a forthcoming book by Prof. Alexander Piel, whom | would like to thank for his
encouragements and valuable hints for this work.

Capt. (ret.) Klaus Petzold
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1.Calculating of the elements of the wind triangle

In the wind triangle, the laws of vector addition apply, since three of the variables occurring (airspeed, wind
speed and ground speed) are vectors. The figures shown under 1.1. are intended to help one to understand

the calculation methods described in chapter 1.

1.1. Definitions
1.1.1. Course, heading and track

Nirue meridian of the geographical
north Pole

Nmagn. meridian of the magnetic north
pole

Ncomp. north direction of the compass

VAR. variation

DEV. deviation

HEADING angle between a reference meridian and
the longitudinal axis of the aircraft.

TRACK angle between a reference meridian
and the trajectory projected onto
the earth's surface.

COURSE angle between a reference meridian
and the route on the map.

destination

COURSE

CH compass heading

MH magnetic heading

TH true heading wind triangle

MC magnetic course

TC true course In the example shown, the wind

MT magnetic track correction is insufficient (o < B),

T true track so that track and course do

(o wind correction angle not match and the destination is

B drift angle missed.

1.1.2. Drift-triangle and wind-correction-triangle N
NT

Nt true north

TH true heading ™

TC true course

T true track _ . . N

VTAS true airspeed wind correction triangle T

VG ground speed Vs

Vw wind speed TC

8 wind direction /}\

awca  wind correction angle

€ wind angle Ny

€-a relative wind angle

OLDA drift angle

drift triangle




According to the sine theorem, the following relations apply in the wind correction triangle:

sin awea= vw SNE_ [1.1/1]
VTAS

sin(&-a
Vv SiN(EzOwen) g o
sin Awca

Note: Computers of type NL work with the wind angle €'. The formula for the ground speed changes
accordingly (the formula for the wind correction angle remains unchanged, as sin a = sin (180 - o ):

sin owea= vw SNE_ 14 4/3)
VTAS

sin (€ + owca)

VG = Vw [1.1/4]
sin Owca
These relations apply in the drift triangle:
VG =\/v§s+ V2 -2 Vpg V, COSE [1.1/5]
sin opa= vy _SN¢€ [1.1/6]

VG

In the arbitrarily assumed case of a vias = 200 kt, a wind speed vw = 80 kt and a wind angle € = 45°,
a drift angle of 21.5° and a ground speed of 154.2 kt is obtained in the drift triangle. In the wind
correction triangle the wind correction angle is 16.4° and the ground speed 135.5 kt.

If one flies with a wind correction angle of 21,5° instead of 16,4°, one gets a new wind triangle with
a drift angle of 14.1° and a groundspeed of 130.6 kt. The lateral displacement at a target 50 NM
away is then 6.5 NM and the calculated flight time is 4 minutes too small.

However, the example is rather an exceptional case. With headwind and tailwind (i.e. with wind
angles around 0°) no drift occurs and with pure side wind (i.e. with wind angles around 90°) drift
triangle and wind correction triangle are very similar.



1.2. Calculation of the wind triangle according to Dalton
1.2.1. Computer with diagram slide
1.2.1.1.General

The wind triangle calculator invented by Philip Dalton exists in two versions. The type shown in
Fig1.2/1, later referred as type E6-B, has a diagram slide with polar coordinates representing speed
circles and radial lines for various drift lines. The version shown in Fig. 1.2/2, later referred to as
Model G corresponds to the representation of Dalton in his patent specification. Instead of using
the diagram slide, it uses an endless band which can be moved by a knob.

10 e 10

D .22 - Fig.1.2/2
% i

T ~& ey
VAR My T OF

gt Fig.1.2/1

1.2.1.2. Use of the computer for drift-, wind correction- and ground speed calculations

Figures 1.2/3 and 1.2/4 illustrate the calculation of the wind correction- and the drift triangle with a
Dalton calculator.

Example:

true course 310°

true wind 265°/125 km/h
true airspeed 450 km/h

The calculation starts with the entry of the wind point W. After setting the compass rose at 265° this
point must be entered on the middle axis 125 speed units upwards (wind correction triangle) or
downwards (drift triangle).The image illustrates the necessary inputs and the results.



12°

TRUE INDEX.
g 10

29W/TH =298

— |

| +WCA=12°

TRUE INDEY

DA=14°]
500 —|

— TAS=450 km/h

o NG GS=351 km/h \

3¢0

o

GS=371 km/h

wind correction Fig 1.2/ Fig.1.2/4 drift triangle

triangle

In his patent specification Philip Dalton describes a method of changing the relative wind angle in
the drift triangle and its step-by-step approach to the wind correction triangle presented with the
help of Figures 1.2/5 -7.

Step 1 (Fig.1.2/5):

The initial situation is the drift
triangle as shown in Fig.1.2/4. If the
drift from 14° to the right is
determined, a course reduction is
recommended which is estimated at
7°, for example.

Step 2 (Fig.1.2/6):
After marking the desired course of 310° (red triangle)
set the compass rose to 310°- 7° = 303° and read a
drift angle of 13°. At the upper correction scale one
can see that with this drift angle the target course is
still missed. The red arrow (13°) ends at course 313°
instead of the red mark (310°).

From this it must be concluded that the selected
heading is too small.

Step 3 (Fig.1.2/7):

The heading is reduced by another 5° to 298°. The
drift angle is now 12°. As you can see from the upper
scale, this drift leads to the desired track of 310°,
because drift angle and wind correction angle now
match. The corresponding ground speed of 351 km/h
is as expected the same as in the wind correction
triangle in Fig.1.2.3.




1.2.1.3. Use of the computer for wind calculations

1.2.1.3.1.Wind determination from drift and ground speed

Due to the graphical simulation of the wind triangle in the Dalton calculator, wind determinations
are particularly quick and easy, as the following example shows (ground speed 130 kt, true air-

speed 100 kt, wind correction angle 20° left, true course 360°).

Solution:

. The true course 360° (N) is
set to TRUE INDEX.

2. The diagram slide is set so, oL
that the speed circle 130 kt =
(ground speed) is below the | =&
centre of the rose. \:1

=32

3. The line of the rotatable E:

il Al

W

pointer is now set to the
intersection point of the
speed circle 100 kt (true
airspeed) with the line
20° (wind correction left).

. The wind direction 224°
(true) can be read directly
on the wind rose.

1.2.1.3.2.Wind determination from two drift angles

Dalton computers allow a very fast and easy wind
determination if the drift is determined on two
courses (which should differ by at least 45°). The
calculation principle consists of the graphical
reproduction of the two wind triangles on the course.
One can also determine the wind vector by direction
and size in the same way if two or more tracks are
known. This procedure is described under 1.17.5.
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4. Wind speed ( 50 kt) and
wind angle (€ = 44°) are
read at the rotatable pointer.

o 35

wind vector

Example:

true heading 1 035°

true heading 2 090°

drift angle 1 +15°

drift angle 2 -5°

TAS 1 =TAS 2 350 km/h
wind direction (true) 255°
wind speed 200 km/h

090°

drift angle 1



Solution:
1. After setting the wind rose to true course 035° and the diagram slide to 350 km/h the first ground speed
vector can be marked with a pencil (Fig. 1.2/10).

2. After setting the wind rose to true course 90° (with unchanged vias the diagram slide remains at 350 km/h)
the second ground speed vector is drawn by marking the intersection of the drift angle -5° with the previously
found ground speed vector. Thus the wind vector is determined (Fig.1.2/11).

3. On computers with a rotatable pointer (Fig.1.2.8) the pointer bar is rotated to become aligned with the found
wind point. The true wind direction (255°) is read at the pointer end and the wind speed (200 km/h) at the
pointer scale (Fig.1.2/11). On computers without rotatable pointer, the wind point is turned downwards until it
is above the centre line of the diagram slide and the wind direction is read at the TRUE INDEX. The wind speed
is then equal to the difference between the values below the centre point (vias) and below the wind point
(Fig.1.2.12).

20\ 30/ 40 4 59
NE

true wind
direction
255°

wind speed
200 km/h

Mms MSS
09z ¥ozz o1z | o

1.2.2. Computer Dalton Mark VII

1.2.2.1. Use of the Computer for wind correction- and ground speed calculations

With the Mark VIl calculator, wind correction angle and
ground speed are calculated graphically using the
longitudinal component vwi of the wind vector.

X
Example: ?_r
true course 180° Il
true wind 315°/40 kt 5
true airspeed 150 kt 2
variation 15°W =

wind correction angle  10.86°

ground speed 175.6 kt g V= 29 kt
true heading 191° Wind=40kt Y
magn. heading 206°




Solution:

1. Turn the wind rose so that the TRUE HEADING INDEX is opposite the
wind direction 315° and mark the wind point (green cross) 40 kt

vertically below the center.

2. Set the compass rose on true course (180° opposite the TRACK

INDEX).

3. Adjust the airspeed scale so that the mark 150 kt (TAS) is above
the longitudinal component line of the wind point (green line in fig.

1.2.14).
4. Read WCA = 11° at DRIFT INDEX.
5. Read true heading =191° at TRUE HEADING INDEX.

6. Read magnetic heading = 206° opposite the variation 15° WEST.

7. The tailwind component vwe is 29 kt. If added to the

TAS . =147 kt (see position 3), the ground speed is 176 kt.

1.2.2.2. Use of the Computer for wind determination 0.

from drift angle and ground speed

The same example as in 1.2.2.1. serves to describe the handling of the Mark
VIl computer for this case. First, set 191° at TRUE HEADING INDEX and then
set DA = 11° at DRIFT INDEX. The true air speed mark 150 kt defines a line
(drawn in green) for the wind point and on the ground speed scale one obtair

TASett. = 147 kt. The difference GS - TASe. is the tailwind component of 29 kt.
The 29 kt line in the tailwind scale crosses the previously found (green) line at
the wind point. After turning the wind point into the vertical axis, a wind speed

of 40 kt and wind direction of 315° are found.

1.2.2.3. Use of the Computer for wind
determination from two drift angles

Example:

true heading 1 360°

true heading 2 060°

drift angle 1 +14° (right)
drift angle 2 +10° (right)
TAS 1 =TAS 2 100 km/h
Solution:

Step 1 (Fig.1.2/15):

a. Set drift 1 (+14°) on the drift index.

b. At the compass rose set the true
heading 1 (360°) opposite the TRUE
HEADING INDEX.

c. From point TAS = 100 km/h draw
along the red grid onto the wind rose
a line (drawn in green).

Step 2 (Fig.1.2/16):

a. Set drift 2 (+10°) on the drift index.

b. At the compass rose set the true
heading 2 (060°) opposite the TRUE
HEADING INDEX.

c. From point TAS = 100 km/h draw
along the red grid onto the wind rose
a line (drawn in green).This line cuts the
first in the wind point.

Step 3 (Fig.1.2/17):

a. Place the wind point below the center of
the compass rose.

b. Read off the wind speed of 24.5 km/h at
the wind point.

c. Read the wind direction of 295° at
TRUE HEADING INDEX.
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1.2.3. Computer E-1A

With the calculator E-1A (see Fig.1.2/18) ground speed and
wind correction angle can be determined without have to
calculate the wind. For this purpose, the drift angle is deter-
mined on two headings (45° larger and 45° lower than the
course). The following example describes the handling.

true course (TC) 045°

true airspeed (TAS) 120 m.p.h.
drift angle at heading 090° (TC + 45) -4°

drift angle at heading 360° (TC - 45) +12°

wind correction angle -5.8°
ground speed 146.2 m.p.h.

Soluton:

1. In the green drift angle diagram (valid for the
heading TC + 45°), the drift line - 4° is found
(marked in the figure by a thick green line ).

2. In the red drift angle diagram (valid for the heading TC
- 45°), the drift line +12° is found (marked in the figure
by a thick red line ).

3. Vertical above the intersection of the two selected drift
lines the wind correction angle WCA = - 6° is calculated.

4. Along the arc through the point of intersection of
drift lines is shown on the speed scale the factor 1.22.
The ground speed when flying with true heading 039°
(45 - 6) is obtained by multiplication of the TAS with this
factor to 146 m.p.h. (1.22 x120 =146).

In Fig.1.2/19 the drift angles 1 and 2 are con-
tained in the drift triangles ABC and ADC and
the wind vector then results as the line A-C.
The triangle CGF is the wind correction- and
the triangle CEA is the drift triangle for the
flight along the course. In both, the TAS is of
the arbitrarily selected length x (= 100%). The
ground speed is received as a percentage of
the TAS. The clear difference between the two
triangles shows that a drift angle determined
on the course is not suitable as a wind
correction angle. The wind correction triangles
CGF and CAH are congruent, so the angle
C-H-Ais equal to the WCA. The ground
speed of the flight with this wind correction
angle is the vector H-C. Its length as a per-
centage of the TAS is determined on a scale
along the line H-C, the graduation of which is
0.01 x. To read the ground speed scale, rift angle 1
parallel circular arcs of radius x (no concentric

circles) have been provided.The wind correc-

tion angle WCA contained in the triangle HCA
retains its size even if the peaks of different 4
wind vectors lie along a parallel to the axis of
symmetry H-F. Because the size x remains
the same, the length of the ground-speed-
distance H - C changes to H" - C, but the
WCA remains unchanged. Therefore the lines
of the same WCA could be drawn parallel to
thelineH - F.
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drift triangle (heading 2)

drift angle 2
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drift triangle (heading = course)

WCA

wind correction triangle (heading: course - WCA)



1.2.4. Compu

ter VC-2

The computer VC-2 consists of a base plate with a compass rose (see Fig.1.2/20), a middle transparent
disk with a grid and speed scales (see Fig.1.2/21) and an upper transparent disk with concentric arcs (see

Fig.1.2/22).

/

1.2.4.1. Use of the computer for wind correction and ground speed calculations

The handling of the computer is explained by the following

example (see Fi

VTAS

true wind
true course
variation

drift angle

VG1

true heading
magn. heading
wind corr. angle
Va2

g.1.2/23):

100 kt
315°/25 kt
360°
10°W

+12.1°
84.2 kt
349.8°
359.8°
-10.2°
80.8 kt

&2

WIND CORR.
TRIANGLE

(0

VG1

DRIFT
TRIANGLE

DA



Solution:

1. The upper disc is set to the true e \
course 360°. S 2

2. The wind point W is marked on the SN gl P00 AR 10
upper disc in the usual way using Q880 g T s
the speed scales and the wind 820 = H
rose.
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3. Along a vertical grid line through
the wind point, point A is found at
the circular arc of speed 100 (v1as).
Thus the triangle AWM corresponds
to the wind correction triangle. In
this the distance AM corresponds
to the true airspeed and the
distance AW to the ground speed.
Their length can be determined by
counting in the grid as 80 kt (see
Fig.1.2/24).
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4. In a second setting, the position of
the upper disc remains unchanged,
but the vertical speed axis of the \_ /)
middle disc is rotated over the true .
air speed vector AM so that the true
heading 350° can be read opposite
the green marker and the magnetic
heading 360° can be read at the
variation scale opposite the
variation 10° W (see Fig.1.2/25).

= o\ 1\

SRS
nﬁ ?\i!i“‘“"

Ak

For the calculation of the drift triangle the procedure is slightly different. The wind point must be drawn in
such a way that the peak of the wind vector ends at the center M and the end of the true air speed vector
(point A) must be determined by counting in the grid.

1.2.4.2. Use of the computer for wind determination from drift and ground speed

The setting of the calculator when determining the wind from drift angle, heading and ground speed is the
same as for the drift triangle described above, which is why a more detailed description is not given here.

10



1.3. Calculation of the wind triangle according to Knemeyer

1.3.1. Use of the computer for wind correction- and ground speed calculations
Nr

The handling of the computer (see Fig.1.3/2) is
described using an example (see Fig.1.3/1).

wind direction 315°

wind angle 135°

135° - 20.7° wind angle 135°

180° - 135°

true course 090°

Vg = 120 kt

WCA =20.7° SERER

On one side of the computer (Fig.1.3/2) the wind angle
can be calculated as follows:

After setting the true course 090° (1) and the wind
direction 315° (2) the wind angle 135° can be read off (3).

The Knemeyer-computer calculates the wind triangle using
the sine theorem (see equ. 1.1/1 and 1.1/2) by means of a
circular logarithmic slide rule.

Fig. 1.3/3 schematically shows the necessary settings for
this example.
Solution:

1. The wind angle (135°) is set opposite the true air-
speed (100 kt).

2. The wind correction angle (20.7°) is read opposite
the wind speed (50 kt).

3. The ground speed (129 kt) is read opposite the :
angle 135° - 20.7° = 114.3°. Fig.1.3/

1.3.2. Use of the computer for wind determination from drift angle and ground speed

To calculate the wind angle and the wind
speed, the Knemeyer-computer has to use
the method of "fitting" the drift angle bet—
ween the true air speed and the ground
speed. In the example (Fig.1.3/4) a wind
speed of 49.6 km/h was determined with the

wind speed ?

wind angle ?

cosine theorem (see equ.1.1/5) and a wind ground speed = 130 km/h Fig.1.3/4
angle of 43.6° was determined with the sine
theorem.

Solution:

Between the values 100 km/h (TAS ) and 130 km/h (ground
speed) on the inner ring, exactly 20° must be "fitted in" on
the outer ring. The solution is found, when the angle 43° is
opposite the value 100 and the angle 63° is opposite the
value 130. Thus the angle €’ = 43° is clearly determined.

€’ is the complementary angle of the wind angle, which is
therefore 137° (180° - 43°). Opposite the wind correction
angle 20° one will find the wind speed 49 km/h.

49 km/h

11 Fig.1.3/5




1.4. Calculation of the wind triangle according to Nemtschinow / Popow

Fig.1.4/1 shows a computer of the NL series, invented by W.G.Nemtschinow and L.S.Popow which has
logarithmic sine and tangent scales for triangle calculations. Fig. 1.4/2 shows the calculation of the

example of chapter 1.3.1.
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1.4.1. Wind correction angle and ground speed calculations (wind correction triangle)

2

3
1.The wind angle €= 45° is set opposite |
the true airspeed (100 k). \H 1 HHmmmuwmu\\ 1l \7?\\?\0\\\?\?\1\\00\ L \1\5\0
2. The wind correction angle (20.7°) is \HH ARRARLA LR AR A LARIRLAL i [TTTTTTT]
read opposite the wind speed (50 kt). 40 50 A 70 80 9 2
3. The ground speed (129 kt) is read 170° 165°  160° 150° 140° 130°12¢° 90°
opposite the angle 45° + 20.7°= 65.7°. N R R R R I CA RE A IR TR NREAE TNt i 1 /2
10° 15° 20° 30°  40° |50° 60° 90°
—| 20.7°
1.4.2. Drift angle and ground speed calculations (drift triangle)
Ntrue
Example: wind direction &
true airspeed 100 kt N,e wind angle
wind angle €"  40°
wind speed 50 kt true course longjtudinal
) win component VL
true airspeed vyag .
VWG 32.1 kt wind speed vy,
vinL 38.3 kt _ _
driftangle  13.1° drift angle R Ineat vive
ground speed 141.6 kt
Fig.1.4/3
1. The two wind components vwc = 32 kt and vw. = 38 kt are calculated using the sine scale:
Vwe Vw VwL Vi
32 50 38 50
| | | |
\ \ \ \
40° 90° sin 50° 90°
e
p
DA ﬁ
13°
2.The drift angle DA = 13° is calculated using the tangent scale: : :
32 138
Vwe VTASHYWL
VW VG
50 142
3. The ground speed vg = 142 kt is calculated using the sine scale: i i
13° 40°
DA s

12



1.4.3. Use of the computer for wind determination from drift angle and ground speed

The wind can be calculated approximately from drift angle and ground speed as follows using NL slide rules
with a tangent scale.

This applies to small angles a:

NS a= VG - VIAs
h = vias tg a
Opa h=atge

Vg atge ~vms tga

tg a tg €

ll

VG - VTAS VTAS

The calculation of the wind angle € and the wind speed is shown for the following example:
vtas = 100 km/h
vg = 140 km/h
a =15°

Step 1 (Fig.1.4/5):
After 15° (DA) has been placed opposite 40 (va - v1as) in the tangent scale the angle €” = 34°can be read opposite
100 (TAS).

10° 15 20° 30° 40° ﬂ tg tg 15° tge’
‘ "\‘\\\‘\H‘\\‘H‘\H‘H\‘\‘\‘\H‘U‘\Hi\‘\‘H“\‘\‘H“\‘H‘\“\‘H‘\“‘\‘\‘H‘HH‘

30 40 50 60 70 80 90100 140 - 100 100

Vo - Vs Virs Fig.1.4/5

Q

Step 2 (Fig.1.4/6): . o
In the triangle follows after the sine theorem: —o- = SN €
Vw VTAS

After the corresponding adjustment of the sinus scale, the wind speed 46 km/h is obtained.

70 80 90100 ?
\HH\m\Mmmu\m\w\\m\m\\m\\uu mmm

[ LN LA W A \HHHH\
30 40 50 70 80 90(100] 2
160° 150°| 140° 130°120° 90°

Fig.1.4/6
10° 15° 20° 30°, . 40° 50° 60° 80° < >

sin

Analytically were determined the wind angle €¢” = 30.8° and the wind speed 50.5 km/h. The errors in the
selected example are 10% for the wind angle (34 : 30.8 = 1.10) and 9% for the wind speed (46 : 50.5 = 0.91).
With a drift angle of 10° the errors would be reduced to 5 or 4.5% for the same true airspeed and ground speed
values.

13



1.5. Calculation of the wind triangle according to Bygrave
1.5.1. Calculating instrument for solving the wind triangle

Fig.1.5/2 shows the computer invented by Leonard Charles Bygrave. The
computer can only be used for one true air speed (60 kt, m.p.h. km/h, m/s). Its
handling is described by the following example (see Fig.1.5/1) from the patent
specification:

true course 350°

true airspeed 60 m.p.h.

true wind SE (135°) /15 m.p.h.
wind corr. angle 8.2°

ground speed 71.7 m.p.h.

Handling:
1. The compass rose is set to true course TC = 350°.

2. The rotatable pointer is set to the wind direction 135°.

3. The ground speed 72 m.p.h. is read from pointer point 15 (windspeed)
parallel to the circular arcs in the speed axis.To calculate the wind
correction triangle, the tip of the wind vector must point to the center.

4. Along the parallel lines the wind correction angle 8° is found.




Procedure:

Fig. 1.5/3 shows a schematic representation of the
wind triangle in the Bygrave computer. The parallel
concentric arcs have a radius of 60. The true air
speed vectors have always the length 60 and along
the arcs one finds the difference va - v1as in the speed
scale. The speed mark 60 is located at the center C,
so that the TAS-arc defines the ground speed.

The peaks of all TAS vectors of the same angle move
on a parallel to the center axis. Thus the vertical lines
form the scale for the wind correction angle.

1.5.2. Course and Speed Calculator MK Il A

1.5.2.1.Wind correction- and ground speed calculations

Example:

true course 360°

true airspeed 200 kt

true wind NE (045°) / 50 kt
variation 15°W
Results in the wind correction triangle:
WCA +10.2°

true heading 010°

magn. heading 025°

ground speed 161.5 kt
Results in the drift triangle:

DA -12.1°
ground speed 168.4 kt

Handling (see Fig.1.5/4):

1. Set the frame of the com-
pass rose to 200 kt (TAS).

2. Set the wind mark at 45°
and 50 kt.

3. Adjust the compass rose so,
that TC = 360° is opposite
to the drift mark. As a result
of the associated movement
of wind point and speed
arm the drift mark move
also (see design description).

4. Read true heading 10° at the
course mark.

5. Read the ground speed
162 kt at the speed arm.

6. Read the magnetic heading
(25°) opposite the variation
(15° in the SBD-DRIFT-scale).

Note:

The drift angle and the ground
speed in the drift triangle are
calculated when TC = 360° is set
opposite the course mark C.
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Design description (see fig.1.5/5):

The crown wheel segment 1 is connected to the
speed arm 6 so that its rotation around point A is
transmitted via the spline shaft 3 to the crown wheel
segment 4. The drift mark 2, attached to segment 4,
thus rotates at point B by the same angle as the
speed arm, but in the opposite direction. The
compass rose 5 and the segment 4 are mounted on
the axis (B) so that they can rotate independently of
each other and can be moved longitudinally together
(red arrow) to adjust the true air speed.

Procedure (see fig.1.5/6):

The method of the calculator consists of the
mechanical simulation of the wind triangle.

1212°
course mark )
<
]
AN
B By setting the COURSE 360°,
& / the wind vector 045°/50 kt and the
10 '3 TAS of 200 kt this drift triangle is
drift mark ——————p— 1 reproduced.

200kt

In the wind correction triangle
the WCA is 10.18° and the
ground speed is 161.5 kt. This
triangle can be simulated by
setting the course mark 360°
opposite to the drift mark. The
drift mark then moves from
-12.12°to0 -10.18 °.

As to see in the figure the com-
puter shows then exactly the
wind correction triangle.
Opposite to the course mark the
true heading 10° can be read.
The transformation of the drift
triangle into the wind correction
triangle has already been de-
scribed for the Dalton calculator
where it takes place step by
step (see 1.2.1.2)).

TAS

drift triangle

wind corr. triangle

16



1.5.2.2. Wind determinations from two drift angles

Example (see Fig.1.5/7 - 9): 360°

true heading 1 360° (o
true heading 2 090° \(\dd«*
drift angle 1 -10° (left) Vppe = 200 kt D= o0
drift angle 2 +5° (right) Xr\» )

TAS 1 = TAS 2 200 kt drtangle 2= 57 ¥ speed 2 wind spoed

true wind direction 065.8° Fig.1.5/7 =

wind speed 35.8 kt g

TAS —

<
e
>
o
%
@
@
=5
~

V.

drift angle 1 = -10°

\ ; Setting the compass rose
o il - on TAS = 200 kt
‘ & and on TH1 = 360°.

The speed arm is adjusted so that
the drift mark points to the first drift
angle of -10°.

A pencil line is drawn through the
groove of the speed arm onto the
surface of the compass rose.

The procedure is used for the
second course TH = 90°
repeated. The two drawn-in
lines cross at the wind point.

After the wind point has been .

i ; o G 10 Srgm
rotated into the symmetry axis, il hw\mu/u////wﬁf’ o
at the course mark the wind .

\\IIIU [T /////
direction of 66° can be read. i ;

The wind speed is 35 kt and is > ”“;
determined on the scale of the "
speed arm between the wind

point (at 165 kt) and the centre
(at 200 kt).




1.6. Calculation of the wind triangle according to Thurston and Sweeney

This computer (see Fig. 1.6/1), invented
by Arthur Thurston and Beauregard
Sweeney is used in the same way as the

Mark IlA of Bygrave (see 1.5.2.), so that ul“‘ ’im“g““w’ *Jo
a description of the handling is omitted “agd
here. The completely different construc-
tive solution is described in Fig. 1.6/ 2.
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Design description (see fig.1.6/2):

The rotation of the ground speed arm 1 is transmitted to the true track disc 6 via the pinion pairs 2 and 3 and
the racks 4 and 5. The complicated kinematics are necessary, because in case of a longitudinal shift of the arm
1 in the rail 7 (for adjustment of the TAS) the disc 6 must not rotate. When the bearing 8 of arm 1 (which is
connected to gear pair 2) in rail 7 is moved to fix the TAS, the pinions of pair 2 rotate around their axes, but the
gear racks 4 and 5 remain stationary. When arm 1 is rotated to the wind point, the pinions do not rotate around
their axes, but both pinion pairs rotate as a unit. The left pinion pair rotates around the axis 8. The rotation is
transmitted to the pinion pair 3 via the gear racks, so that it rotates around the axis 9. Since pinion pair 3 is
connected to disk 6 and pinion pair 2 to arm 1, its rotation is transmitted to the true track mark at the correct
angle. The variation is set at the left end of the connecting rod 10 and the lever 11 with the mark 12 (true
heading) is turned around the axis 9. The compass rose 13 is rotatably arranged on the axis 9 in such a way
that it rotates synchronously with the disc 6. When calculating the wind correction triangle, this coupling must
be switched off, so that the TC does not change. Switch 15 (LOCK) is used for this purpose and is
mechanically connected to the locking device 16, which blocks the compass rose. The wind arm 14 can be
turned around axis 9 to determine the wind direction, then it rotates synchronously with the compass rose 13.

2 7 4 5 15 10 16 9 6 13 3
N
)
[ 3 >
2
g =
) E”
&
3
&
09"«01’
0.2
\
8 12 11 14 1
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1.7. Calculation of the wind triangle according to Addison and Luard

1.7.1. General

The wind triangle calculator
invented by Herbert Addison
and William Blaine Luard
mechanically reproduces
the wind triangle. It exists
in several versions. One
of these shows Fig.1.7/1.

(9]

c The wind triangle ABC (Fig.1.7/2) can be
supplemented to the parallelogram ABCD, the
B diagonals of which are exactly halved by the
intersection point M.
The Addison-Luard computer therefore has three
pointers that can be rotated around the centre A
M 2 of a compass rose to simulate the wind triangle.
Fig.1.7/4 shows the construction schematically,
where after input of two vectors always the third
one adjusts itself in direction and size. The
D mechanical connection between the pointers of
the true airspeed and the ground speed is made
by means of a pantograph mechanism, where

ground speed (GS)
o
w

A N Fig 1.7/ the point M is always in the middle of the line
B DB. If the distance DB is reduced by the
M D distance s, the center M only moves half the way

(see Fig.1.7/3). Therefore, only half the amount is
displayed at the ground speed pointer. Divisions
in scale 1: 2 on this pointer make doubling of the
displayed value unnecessary.

B - amili0.1.7/3

Nin
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course or track pointer

heading pointer

true airspeed scale

compass rose
arrester

wind direction pointer — AT !
wind speed scale  EEIL

1

HH\HH\
T

.7.3. Use with wind determinations from two drift values

The version of the Addison - Luard calculator,

described in the patent specification, has two

additional pointers for setting two tracks to o
determine wind direction and wind speed (see °

Fig.1.7/6). The handling of the computer with €
wind determinations from two drifts is de-
scribed using this example (see Fig. 1.7/5):

true heading 1 360°

true heading 2 060°

drift angle a4 +12° (right)
drift angle o2 +17° (right)
TAS 1 =TAS 2 100 kt
true wind direction 329.3°
wind speed 30.7 kt

Handling (see fig.1.7/6):

NO Ok~ WN =

8.
9.

. Set speed arm on 360° (HDG 1).

. Set speed 100 kt (TAS).

. Set the pointer to 12° (drift 1)

. Set speed arm on 060° (HDG 2).

. Set speed 100 kt (TAS).

. Set the pointer to 17° (drift 2)

. Adjust the wind arm so, that the wind point W is

at the intersection of the drift arms.
Read wind direction 330° at wind arm.
Read wind speed 31 kt at wind scale.

OC1=12°

sinQo - sin(Q2 +f)

tane=
For the analytical calculation of the cos (02 +fB) -
wind angle € and the wind speed vw

sin Ao
tan a4

[1.7/1]

these formulas shall be applied:

sin Ao o
= % V
vw=100 sin (o +p+¢€) {0 TAS}

[1.7/2]
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wind point W

?
3

1.8. Calculation of the wind triangle according to Goudime-Levkovitsch

1.8.1. Type 1

Paul Goudime-Levkovitsch had several computers patented, all based on the law described in Fig.1.7/2.
Fig.1.8/1 shows a drawing of type 1. This variant has the additional adjustable ruler 1 for wind calculations
from two drift values (see 1.8.1.2.).

The computer has three wind roses, which are rotatable and arranged next to each other at equal distan-
ces. Since the base plate is transparent, the device can also be used as a protractor. The ruler attached to
the air speed arm has two linear scales, the beginning of which lies at the pivot point. The two sets of
labels on the airspeed arm are arbitrary numbers for the distances a and 2a, as can be seen below.

K COURSE TO STEER TRACK WIND DIRECTION

TRUE 1y,
N

S ® 9 S 7y j
o 100 %
b 80 k<
M 60 <
40 =

35 80
40
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1.8.1.1.Calculation of wind correction angle and ground speed 010

How to use the computer to calculate wind correction and ground speed is
described in this example (see Fig. 1.8/2):

true course 010° ’LA‘QO
true airspeed 100 kt

true wind 240° /30 kt

WCA 13.3°

ground speed 116.6 kt

In Fig.1.8/2 the line BA corresponds to the true airspeed vector, and the line BD to
the ground speed vector. The triangle ABD is the wind triangle with the wind
correction angle (13°). The diagonals intersect at point M, which halves the lines CA
and BD. B

Fig.1.8/3 shows the necessary settings on the computer. First the wind direction is
set to 240° on the right disc, the course 010° on the middle disc and 100 kt on the

speed arm (point A).

Now the ruler has to be set to the value 30 on the wind speed scale (point C) and the speed arm has to be
adjusted (point A) so that the distances AM and MC are equal. The coarse and fine scales of the ruler are

used for this purpose. The point M is always exactly in the middle between the points A and C, if at point

M in the coarse scale the same digit stands as at point C in the fine scale (in the example it is the digit 36).

The heading of 357° is read on the left compass rose and the ground speed of 117 kt is read on the

middle scale. The division of the ground speed scale is 1:2 to the other two scales, because the distance

BM is only half as long as the ground speed vector.

a M a C

- g
[ T T T T T T T T T T T T T T T T T T T T 1T T T T T 1T T T T T T T T T T 1 T 11
30 36 40 50 60 70 80 90 100
15 20 25 30 35 36 40 45 50

357°

1.8.1.2. Use of the computer for wind determination from two drift angles

The calculation of wind direction and wind speed is explained by the example shown in Fig.1.7/5 (TAS= 100 kt,
DA1 = +12°, DA2 = +17°, TH1 = 360°, TH2 = 060°).

Solution (see Fig.1.8/4):

1. The first heading (360°) is set at the left rose (COURSE TO STEER) and the first track (012°) on the middle
rose (TRACK).

2. The wind point W is found, if the connecting line A1-M-W is exactly halved by the ground speed vector, i.e.
the distance A1-M has the same length as the distance M-W (see 1.7.). However, since the ground speed is
unknown, this method fails. If, however, one arbitrarily assumes two ground speeds (at points M"and M”),
the wind points W™ and W™ are found, on whose connecting line the real wind point W lies (see 1.8.2.). The
movable ruler 2 is used to mark the connecting line W' - W” and is fixed at the drawn position.

3. After setting the second heading (060°) on the left rose and the second track (076°) on the middle rose, the
ruler 2 can be used to find a point W, which is located on the line W - W”. The lines Az - M2 and Mz - W
have the same length. The wind point W is used to determine the wind direction 330° on the right rose and
the wind speed 30 kt on the wind speed scale.
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HDG1=360°

>

TAS=100 kt =

o>
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TRK)= 016

WIND DIR. 1
330°
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1.8.2. Type 2
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SIMMONDS-GOUDIME:
AUTOMATIC COURSE CALCULATOR TYPE E
Patent N° 395806

Design Descripti

TRACK

DIRECTION OF WIND

MAGN.

MAGN.

RETURN TRACK

I
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2 S
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SIMMONDS AEROCESSORIES L™
LONDON

Fig.1.8/5 represents the front view of the computer and Fig.1.8/6 a schematic and side-inverted rear view.

1 variation setting knob

2 knob for TAS setting

3 knob for wind speed setting

4 disc for heading setting

5 disc for wind direction setting

6 lever for locking the TAS setting

7 lever for locking the heading setting

8 lever for locking the wind speed setting

9 lever for locking the wind direction setting

24

10 right compass rose (wind direction)
11 left compass rose (heading)
12 middle compass rose (track, course)
13 with knob 3 connected pinion
to adjust the wind speed arm 15
14 with the knob 2 connected pinion
for adjusting the airspeed arm 16
15 wind speed arm
16 airspeed arm
17 rack
18 ground speed arm



15

12 17 16 11 14

This schematic representation of the interior of the computer shows its basic structure. The principle of the
calculator is based on the procedure described under 1.8.1.1., in which a specially scaled ruler creates the
same distance "a" between the peaks of the three vectors true airspeed, wind and track. With the con-
struction used here, the equality of the distances "a" is achieved by two racks which are coupled to each
other via a pinion on the ground speed arm. The calculation of wind triangles is thus reduced to the setting of
the given values, and the result can then be read off immediately.

1.8.3. Type 3

1.8.3.1. General

This type (see Fig. 1.8/7) is a four-vector-computer specially designed to calculate the interception of moving
targets in particular vessels. The calculator therefore has four compass roses.
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Fig.1.8/8 is a schematic side-inverted representation of the interior of the computer and shows its basic

structure.

14
43

40

42
46
39

49— ) o }\\%H
SEN 49

N 38
12
20

. ) -

Design Description
1 compass rose for setting / reading BEARING or TRACK
2 compass rose for setting / reading COURSE OF SHIP
3 compass rose for setting / reading COURSE TO STEER (heading)
4 course rose for adjustment / reading of the DIRECTION OF WIND
5 setting and display element for BEARING OR TRACK and RELATIVE OR GROUND SPEED, connected to
arm 6. Using the second course window (RETURN BEARING OR TRACK) one can set BEARING TO (QDM
or QUJ) or BEARING FROM (QDR or QTE).
6 arm for RELATIVE OR GROUND SPEED
7 setting and display element for COURSE OF SHIP (connected to ship speed arm 8)
8 arm for SHIP SPEED
9 setting- and display-element for COURSE TO STEER (connected to true airspeed-arm 10)
10 arm for TRUE AIRSPEED
11 setting- and display-element for DIRECTION OF WIND (connected to wind speed arm 12)
12 arm for WIND SPEED
13 adjustment knob for RELATIVE OR GROUND SPEED (on one axle with pinion 14)
14 pinion for longitudinal movement of the arm 6
15 adjustment knob for SHIP SPEED (on one axle with pinion16)
16 pinion for longitudinal movement of the arm 8
17 adjustment knob for TRUE AIRSPEED (on one axle with pinion 18)
18 pinion for longitudinal movement of the arm 10
19 adjustment knob for WIND SPEED (on one axle with pinion 20)
20 pinion for the longitudinal movement of the arm 12
21 scale for RELATIVE OR GROUND SPEED
22 scale for SHIP SPEED
23 scale for TRUE AIRSPEED
24 scale for WIND SPEED
25 lever for locking RELATIVE OR GROUND SPEED
26 lever for locking SHIP SPEED
27 lever for locking TRUE AIRSPEED
28 lever for locking WIND SPEED
29 lever for locking TRACK / BEARING
30 lever for locking COURSE OF SHIP

10

18

26



31 lever for locking COURSE TO STEER

32 lever for locking DIRECTION OF WIND

33 adjustment of the reading line for TRACK / BEARING

34 adjustment of the reading line for COURSE OF SHIP

35 adjustment of the reading line for COURSE TO STEER

36 adjustment of the reading line for DIRECTION OF WIND

37 adjustment of the reading line for the track when the double-drift method is used to determine the wind

38 compass rose for double-drift method (see note 2)

39 pointer for double-drift method

40 middle part of the racks 42 with the mark 43

41 middle part of the racks 44 is made of transparent material with mark 45

42 rack pair 1 (due to the coupling of the racks via two gear wheels the distances between the circle mark
and the bearing points at the speed arms are always the same)

43 mark on part 40.

44 rack pair 2

45 mark on part 41

46 window for the adjustment of marks 43 and 45 as well as for wind determinations according to the double-drift
method

47 adjustment ring for the compass rose 38

48 adjustment knob for the parallel movement of the pointer 39 (on one axis with the pinion 49)

49 pinion for adjustment of the pointer 39

Notes:

1. Since it is common practice to indicate the wind according to the direction from which it comes, the
course rose is rotated by 180°.

2. For this procedure, the pointer 39 must be aligned parallel to the track. In order to be able to set the
adjusting ring 47 to the same value as the tracking element 5, this compass rose is " counter clockwise".

3. The arm 8 for the SHIP-SPEED is mounted in the opposite direction to the adjustment element 7.
The explanation for this is given in chapter 2.7.1. (intercepting).

1.8.3.2. Use of the computer for wind correction- and ground speed calculations

How to use the computer to calculate wind correction and ground
speed is described in this example (see Fig. 1.8/9):

true course 050°

true airspeed 100 kt

true wind 280° / 40 kt
WCA -17.8°
ground speed 120.9 kt
true heading 032.2°

WCA=17.8°

The wind correction angle and the ground speed are determined as follows (see Fig.1.8/10):

. The true course 050° is set and locked at the track element (1).

. Since a fourth vector does not occur, the ship element is set to zero speed at any course (2).

. The true air speed 100 kt is set and locked on the airspeed element (3).

. The wind element is set to 280° and 40 kt and both are locked (4 and 5). With this setting one mark 6 is
already fixed in the center window.

5. Only the speed is fixed at the airspeed element and only the direction at the track element. The direction of

the airspeed (7) must now be set to a position where the two marks 6 in the window are exactly above each

other. To do this, both the adjustment knob 8 and the airspeed element must be turned. Then true heading

032° (at position 7) and ground speed 121 kt (at position 1) can be read.

A OWN =
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Example (see Fig.1.8/11):

An airplane departs from point A with
constant true airspeed 100 kt and a true
heading of 045°. After 15 minutes it reaches
point B. Between points A and B the distance
of 30 NM and the true track of 060° is taken Nt
from the map. This will result in the ground
speed 120 kt and the drift angle 15°.

A DA = 15°

The following computer settings are necessary (see Fig. 1.8/12):

1.The track 060° and the ground speed 120 kt are set on the track element and both are locked (1).
2.Since a fourth vector does not occur, the ship element is set to zero speed at any course (2).

3.At the airspeed element the true airspeed 100 kt and the heading 045° are set and both are locked (3).
With this setting one of the two marks 4 in the middle window is already fixed.

4.The wind element 5 must now be brought into a position in which the marks 4 in the window are
exactly one above the other. To do this, both the wind direction and the wind speed must be

varied using the adjustment knob 6. If both marks are exactly above each other, the wind direction 288°
(at position 7) and the wind speed 35 kt (at position 8) can be read.
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1.8.3.4. Use of the computer for wind determination from two drift angles

For wind calculations
from two drift values
(double-drift method) the
computer is equipped
with an additional
compass rose and a
pointer in the middle
window. The handling is
described using the
example shown in
Fig.1.8/13.

iy
SIMMONDS AEROCESSORIES L™
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The two drift triangles ABC and DBC can be
completed to the trapezoids ABA'C and DBDC .
In Fig.1.8/14 correspond

the line AC to TAS 1,

the line AB to track 1,

the line DC to TAS 2,

the line DB to track 2 and

the line CB to the wind vector.
The diagonals of the trapezoids intersect at point M,
which halves both the diagonals and the wind vector
(i.e. MA and MA” have the same length and also MD
and MD’" have the same length). Thus the direction
and size of the wind vector are clearly determined. In
the computer, the vectors are simulated by rotating A
levers of adjustable length. The diagonals are repro-
duced by pairs of racks, the central part of which has
a circular mark always located in the middle between
the end points (see Fig.1.8/8).

D
The following computer settings are necessary:
Step 1 (Fig. 1.8/16)
First the air speed arm is positioned B ook}

on the TAS1 =100 kt (1) and on the
first heading = 060° (2) and both
are locked. The track arm is then
set to the first track of 077° and
locked (7). The position of the
middle mark (point M) is not yet
determined, because the ground
speed 1 is unknown. At Fig.1.8/15
the mechanism of the computer
schematically is shown. The ground
speed arm is pointing in the di-
rection of track 1(077°).

The true airspeed arm has a length of
100 kt and is pointing in the direction

of heading 1 (060°). The line AB
represents the unknown ground

speed. The line CB corresponds to LN
the rack pair between the two speed ) =
arms. The center mark M is located on

the rack pair between points C and B.
The points B" and B” stand for
arbitrarily assumed ground speeds
and the points M” and M” for the

TN
W 2b

0 R

9\
”'///rzélmmﬁmmﬂmu\\\

corresponding midpoints. From the
intercept theorem follows, that all

centers M lie on a parallel to track 1.

Step 2 (Fig. 1.8/16)

An arbitrarily selected ground speed
(here 100 kt) must be set at the
ground speed arm to fix the center
point 3 (M in Fig.1.8/15). To seta
parallel to the ground speed arm, the
pointer 5 must be set to the direction
of track 1 by using the scale 6 and

SIMMONDS AEROCESSORIES LT

over the center point 3 by using the
knob 4.
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Step 3 (Fig. 1.8/17) 3
The computer, which was
constructed for the solution
of 4-vector problems, can
of course also be used for
3-vector tasks. In this
example the element for
the course and the speed
of the ship is not needed
and therefore ship speed
zero is used. 6
The following settings are
necessary to consider track
2 for the determination of
wind direction and wind
speed:

S 2
5

OURSE T STEzy

9 —

11
8 ——

ipyge LN 58
2
i

SIMMONDS AEROCESSORIES LT

1. Set the true airspeed 2 (100 kt) and heading 2 (360°) on the airspeed arm and lock both (1 and 2).

2. Set the track arm to track 2 (020°) and lock it (3).

3. Set a ground speed at knob 4, where the circular center mark 5 (that of the rack pair respectively the
diagonal track element - air speed element) is below the pointer 6.

4. Set the speed at the ship element (7) to zero.

5. While simultaneously adjusting the arm of the wind direction (8) and the knob for the wind speed (9),
an adjustment must be sought at which the second circular middle mark (that of the rack pair
respectively the diagonal ship-element - wind-element) is exactly above the other mark 5.

6. The wind direction of 310° (10) and a wind speed of 36 kt (11) can now be read at the wind element.
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1.9. Calculation of the wind triangle according to Plath
1.9.1. Type ATS-4 (Aviator)

1.9.1.1. General

Fig.1.9/1 shows the side of the computer on which
the wind triangle mechanically is reproduced. The
other side (Fig. 1.9/2) has logarithmic scales for
the solution of time-speed-distance-problems as
well as a logarithmic sine scale to calculate (2]
wind triangles.

1.9.1.2. Example of a mechanical
calculation

Fig. 1.9/1 shows the settings for the
calculation of this example:

true airspeed 110 kt
true wind 070°/14 m/s
true course 032°

wind correction triangle:

wind corr. angle +8.8°
ground speed 87.3 kt
drift triangle:

drift angle -10.71°
ground speed 90.1 kt

© The compass rose is set and fixed at 032°.

@ The wind point (red in the figure) is marked
at the intersection of the 70° - line (wind
direction) and the circle 14 (wind speed 14 m/s).

© The angle scale shows a starboard WCA of 8°.

@ At the vertical speed scale a ground speed
of 87 kt is displayed.

The calculation of the drift triangle is analogous to the method described
above. The calculation also starts with the setting of the course (1). The

vertical scale is then set to TAS = 110 kt (4). After the movable arm
has been placed against the green wind point, the port drift
of 10° can be read at the angle scale. The ground speed
of 90 kt can be found at the wind point (green
dot in the picture).
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1.9.1.3. Example of a mathematical calculation

In Fig.1.9/3 this example of using the calculator for wind triangle calculations is shown:

wind angle (g) 35°

wind speed (vw) 200 km/h
true airspeed (v1as) 570 km/h
wind corr. angle (awca) 11.6°
ground speed (vg) 394.5 km/h

The computer has logarithmic scales in which these settings are made (sine theorem - see equ. 1.1/1 and 2):

- = e » scheme of settin > 200 | 570
sin awca sine " 9 > 116° | 35°
vw e . 200 | 394
. = » scheme of setting > — .
sin awca  Sin (€ - awca) 11.6 23.4

Olwea=11.6°

V=200 ks

\ 1)

2
%

Z~—— V=394 km/h

1.9.2. Plotter ,Kurskoppler® Kk7

1.9.2.1. General

The plotter Kk7 (Fig.1.9/4) can be used both for determining courses and distances in the map and for
calculating the wind correction angle and ground speed. It is suitable for maps on a scale of 1:1 million,

1:2 million and 1:3 million. The basic body 1 and the compass rose 2, rotatably mounted on it, are made of
transparent material. The red arrows 3 support the north orientation. The concentric circles 4 indicate the wind
speed. The ruler 5 has 3 scales for the three maps used for distances and speeds.
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1.9.2.2. Use of the plotter for determining wind correction angle and ground speed
Example:
true course 045° true heading 64.6°
true airspeed 150 km/h ground speed 141.2 km/h
true wind 135°/50 km/h
Solution (see Fig. 1.9/5 and 6): D
1. The route is drawn on the map (line SD). \
destination

2. After marking the wind point W (entered in red) on the compass rose and the airspeed
mark at 150 on the ruler (red triangle), the wind rose is aligned on the map to true N

north (red arrows parallel to a meridian).
3. The wind point W is placed over the starting point S. &
4. The ruler is rotated until the airspeed mark greenmark @ /g W
(red triangle) touches the way line. N, o
5. Point G (opposite the red mark) will TH = 64° 3 \%\ W
be marked at the route in the e w N
map (green triangle). e C\ s \\% o
6. GMW and GAB represent the $\ o !""’%””//////////,//// G I W o W
wind triangle, since the distan- e UL I, 4 T X
ces MG and GA have the
length 150 (airspeed), the
distances MW and AB = <

S
Q
S
O

o\ A
3 \\\\\\\
P

red mark
(true airspeed 150 km/h)

N

have the length 50 (wind
speed) and the angles =3
M-W-G and A-B-G /’
correspond to the angle
between the course and P S
the wind direction (wind angle). i B
This means that the distances WG

and BG must correspond to the ground
speed. The angles M-G-W and B-G-A are

equal to the wind correction angle, which is not
directly readable. The heading can be determined at the intersection of the line MG with

the compass rose, because the angle between the lines MC (parallel to the way line) and MG is the
wind correction angle. At the arrow on the ruler the true heading of 64° can be read.

T,

7
N G

poe ~——starting point S and
’ wind point W (135°/50 km/h)

B e b "
Ferti e F|g 1 9/ 5

/a?/
I,

/
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7. Once the speed ruler has been placed on the route in N 0
: destination

such a way that the zero point (centre of the compass rose)

is on the starting point S, the groundspeed of 141 km/h can

Re,

be read at mark G (see Fig.1.9/6). The distance SG therefore is @
completed in a map of the scale 1: 2 million in the time of one NP N
hour and in a map of the scale 1:500000 in the time of 15 P e
minutes. The flight time for a 100 km distance can be roughly o
estimated over the length of the 15-minute section or Ree W
calculated by measuring the routes S-G (assumed as an ¥ s e R
example distance 70.6 mm) and S-D (200 mm) in the map 141 € Ly N \
using the ratio equation A%
S A o RS R
SG SD 70.6 200 X
— == — = = G N
15 T 15 T e
@:\\\\\\\ \\\\\\\“\3\\5\:\..!L!H,WI’Q/W///////// tpi;}eo $
but also using the speed equation o % § N
100 x 60 , . Rﬂ& ) i
——— = T[min] ’ starting point S
141 °
In both cases the time is
T =42.5min
1.9.3. Plotter ,Koppler“ Ko 5
4 2 5 1

S : 5 IR
3 \
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NN\
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mileage scale 1, a speed field 2,

the rotatably pointer 3 and in the zero point

of the scale a compass point 4, which allows

the plotter to be used like a drawing triangle and

at the same time to use like a circle. The slot 5 in the

centre axis 6 serves for the drawing of course marks.The

plotter is intended for work with a map of scale 1: 0.5 million. With
its help it is possible to graphically determine the data of the wind triangle.
An example assumes a true airspeed of 120 kt and a true wind of 320° / 30 kt.

The true heading and the flight time are to be calculated. The method is described at the

route S-D drawn into the map (black line in Fig.1.9/8).
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starting point S dash in the slot

route

destination point D
tep 1 (see Fig. 1.9/8):

The center of the compass rose lies on point D (destination) and the pointer is aligned parallel to
a meridian.

The plotter, whose pointer is set to the wind direction 320°, is placed on the map as follows:
2. Through the slot a dash is drawn on the map (shown red).

Step 2 (see Fig. 1.9/9):
1.

The wind vector DW is drawn into the map. For this the mileage scale of the plotter is used. One
chooses for the speeds a suitable scale (in this example they were cut in thirds). The point W will be

on a straight line in the direction of the red mark (wind from 320°) at a distance of 10 NM (one third of
the wind speed) from point D.
2.

Point A is located on the extension of the line SD at a distance of 40 NM (0.3 TAS) from W. When

drawing circular arcs, the compass point of the plotter is used. The triangle ADW is now the wind
correction triangle in which the distance A-D corresponds to the ground speed vector.

o

Fig.1.9/9
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Step 3:

1. The distance between S and D measured with the mileage scale is 45 NM (multiplied by 3 the ground speed
of 135 kt results).

2. The heading is determined by placing the centerline of the plotter on the line AW. After aligning the pointer
parallel to a meridian, it shows the true heading of 075°.

3. The flight time is determined in the speed field (see Fig.1.9/10). The ground speed line of 135 kt (highlighted
red) must be placed on the route SD in such a way that its zero point is over the start point S. The

destination point D then lies on the 17-minute line, which corresponds to the flight time from S to D at a
groundspeed of 135 kt.

““\&\\\\\Q{\\\\\\\\\\t\\*@@&\\
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\\\\\\\\ \‘\§5~\ 3
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1.10. Calculation of the wind triangle according to Bakker

1.10.1. General

The Windprotractor (Fig.1.10/1), invented by Olof Bakker
is suitable for measuring courses on the map as well as
for wind triangle calculations. Although it is suitable for
several speeds and map scales, its design is based on
the following arbitrary premises:
1. use of maps on a scale of 1: 0.5 million
2. true airspeed 100 kt
3. time interval 8 minutes
In 8 minutes at 100 kt 13.33 NM will be travelled.
This corresponds to a length of 49.38 mm on amap at a

scale of 1: 0.5 million. The radius of the transparent disk
is therefore 49.38 mm:

13.33x1.852x10°
500,000

R=

=49.38 mm

The scales 1 and 2 are required for map scales other
than 1:0.5 million (see 1.10.2.2.)
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1.10.2. Application

1.10.2.1. Working with maps of scale 1: 500,000

This example is intended to explain the use of the computer (see Fig.1.10/2):

true course 107° true heading 86.3°
true airspeed 100 kt flight time 32 min
true wind 045°/40 kt

distance 40 NM

—

. Draw the wind point W at 45° on the 4t circle (windspeed 40% true airspeed).
2. The computer is then aligned on the map so, that the north arrow is parallel to a meridian and the wind
point W is over the starting point S of the flight path SD.
Since the lines AS and BC correspond to the wind vector and the direction of the lines SC and AB
correspond to the course, the triangle ABC is similar to the wind triangle and the angle C-A-B is the
wind correction angle. The true heading of 086° (course minus wind correction angle) is therefore
directly readable.
3. The distance AC (true airspeed) is of the length R =13.33 NM and corresponds to the time of 8 minutes.
The lines SC and AB correspond to ground speed. Their length a is therefore the distance that is
completed in 8 minutes above ground. In order to determine the flight time, one must determine how
often the length a is included in flight route SD. This can be done by using the disc to enter time marks
at intervals from the length a (8 minutes). In the figure one can see red arcs on the route, labeled with
the corresponding flight time. In most cases, the length of the last interval must be estimated.

A |98 / % > Time markers at distance a,
which can be defined by
moving the calculator along
the route in the map.

route SD in the map

24 min

1.10.2.2. Working with maps of a scale other than 1: 500,000

Since the wind speed is calculated in percent of the TAS when drawing the wind point into the computer, the
wind triangles are similar and the determination of HEADING or WCA is independent of the airspeed and the
map scale. However, this does not apply to the flight time calculation. The distance covered in the time
interval of 8 minutes with true airspeed of 100 kt is 13.33 NM. In a map of scale 1: 0.5 million this corres-
ponds to 49.38 mm. Since the calculator has this radius, it cannot be used for determining flight times using
other maps and other flight speeds. In the map 1:1 million 13.33 NM correspond only to the half of the length
(24.69 mm) and when flying with TAS = 100 kt and using the time interval of 8 minutes one would get only half
the flight time. To avoid this, the time interval 4 minutes must be selected for TAS = 100 kt when using the
map 1:1 million. If the map 1: 0.25 million is used, the time interval must be doubled (from 8 to 16 minutes).
With a true air speed of 200 kt, the map 1 : 0.5 million also shows an incorrect flight time if the time interval of
8 minutes is used, as with doubling the speed a doubled distance is covered or half the flight time is required,
so that the 8 minute interval must be halved. The table 1.10/1 shows these relationships:
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TAS [kt] 50 (100 | 160 |200 | 240 | 320
1:0,25Mio.| 32 | 16| 10 8 | 6:40 5
Time[min] | 1:0,5Mio. | 16 | 8 5 4 | 3:20 | 2:30

1:1 Mio. 8 | 4| 230 | 2| 140 1:25 able 1.10/1

The colored parts of the table are displayed on the computer. The 360 degree scale is used simultaneously for
the true airspeed and the time interval. The 360-degree rose is used simultaneously to display the assignment
of time intervals to speeds. For example, the time interval 8 minutes is displayed beside the 100° mark which
also stands for the speed 100 kt. In this way, the calculator is extremely easy to use when using a map

1: 500,000 for all true airspeeds below 340 kt. In order to be able to use other map scales as well, the two
additional scales were added to the right and left of the concentric circles (see Fig.1.10/1). For a map with a
scale of 1:1 million, the right scale must be placed on a circle of longitude with the angular minutes marked,
the distance of which on a great circle corresponds to one mile. Fig.1.10/3 shows that the 10 NM distance
(from 50°N to 50°10°N) in a map of the scale 1:1 million in the right scale ends at 50% TAS. This means that at
TAS=100 kt the 16-minute time interval must be used (see table). On the protractor the time interval 16 min. is
therefore to be found at the number 05. If a map of scale 1: 250,000 is used, the left scale shows that the
length of 5 NM leads to the 200 %-TAS mark, so that the time interval can be read at the double TAS. When
flying at 160 kt, the time interval to be used is not the 5 minutes listed next to them in the computer, but the 2
minutes 30 seconds opposite the 320 kt (see table). For all other map scales, the procedure shall be applied
accordingly.

50°5" _ |5NM 10 NM
200 100 |
5NM  —100 50 —— %T 50° 10
s -+ T 10N
o g +0% 0% | i .
5070 TAS  TAS - 8070
map protractor map :
1:250,000 1: 1,000,000 Fig.1.10/3

1.11. Calculation of the wind triangle according to Knight

The Knightson computer, (see Fig.1.11/1),
works according to the procedure de-
scribed under 1.10. Each computer is only
suitable for one true airspeed (printed at
the bottom right) and for use in a map of
the scale 1:500,000.The unique time inter-
val of 6 minutes applies to all of them, so
that each computer has a different diame-
ter. The computer shown, calculated for
90 kt, has a diameter of 66.66 mm.
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1.12. Calculation of the wind triangle according to Lahr
1.12.1. Use of the computer for drift-, wind correction- and ground speed calculations

The calculator, invented by Ray Lahr (see Fig.1.12/2) determines wind correction angle and ground speed
using the wind components vw. and vwc (see Fig.1.12/1). For smaller wind correction angles (<10°) the
calculation of the effective true air speed can be omitted in a first approximation. These relations apply:

true course

: Ve
Sin X = = +
WCA TV A VTAseﬁ Vi T
A
Viasq = V QW
Viasgy = Vras COSOycn e T . g Vi
valid for o, ., < 10 we |
H . . . . . VTAS VTAseff
These equations are calculated in logarithmic scales using these settings: o
>
sina ., | 1(sin90°) cosa, ., ‘ 1 (cos 0°)
Ve | Vias Viaser | Vras

The following example explains the handling:

true wind 210°/40 kt wind corr. angle -11.5° A vca
true airspeed 100 kt ground speed 132.6 kt
true course 360°

4.In the cosine scale the
effective true airspeed of 98 kt

is found opposite to the 1. Adjust the inner
WCA = 11.5°. The ground disc to true course
speed is thus 98 + 35 = 133 kt. TC = 360° and the
middle disc to
TAS = 100 kt.
. s P .\
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/,}pc: - N o = <& 3. Opposite the cross
/’/,f ‘:{- 2oy 1 e wind component
OB 02 ot B _ viwe = 20 kt the wind
/”/ ,!.«f ‘8 o6l 81 of ° F:orrection angle 11.5°
'HH|||'|" is found.
2. The wind point is marked at the intersection of the 40 kt- Fig.1.12/2

wind-circle with the wind direction 210°. The wind components
vwe of 35 kt and vwc of 20 kt are determined using the grid.
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1.12.2. Use of the computer for wind determination from drift and ground speed

Example (see Fig.1.12/3):
true course

wind correction angle
true heading

true airspeed

ground speed

true wind direction
wind speed

175°
-15°
160°
180 kt
144 kt

117.7°
55.3 kt

To calculate the wind vector BD, its longitudinal component BC ( in the
direction of true course) and its cross wind component CD (right-angled
to it) are first determined. For small wind correction angles, the difference
between groundspeed and true airspeed is used as the longitudinal wind
component. For larger wind correction angles, as in this case, the
longitudinal wind component must be calculated as follows:

BC = AC - AB

AC = AD *C0S Olwca

The following settings and readings on the computer result in a true
wind direction of 118° and a wind speed of 55 kt (see Fig.1.12/4):

1. The true airspeed (180 kt) is

multiplied by the cos15° and the

distance AC is 174 kt. The
longitudinal wind component
BCis 174 - 144 = 30 kt.

2. After setting the TC of 175°, at

30 kt head-wind a horizontal line

to the left (wind from the left) is
drawn on the compass rose.

3. Opposite to the sin 15° (WCA)
the cross wind component of
47 kt is determined.

4. The vertical line upwards drawn

at 47 kt on the left-crosswind
side crosses the headwind
component in the wind point,
which lies on the 55 kt speed
circle (wind speed 55 kit).

(4]

. From the center of the wind rose
a line is drawn through the wind
point, which marks the true
wind direction of 118°.

groundspeed
vg =144 kt

longitud.
wind
component

A
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1.13. Calculation of the wind triangle using the computer NR-1

1.13.1. General

With the calculator NR-1(see
Fig.1.13/1 - diameter 25 cm) the
splitting of the wind vector into two
components is applied, which is
already described under 1.12. With
this calculator the wind correction
angle can be read directly and the
calculation of an effective true air
speed is not necessary. The
computer displays the wind vector
in the correct length and position.
Its longitudinal component is
indicated on the vertical scale.

The horizontal cross component is
used to determine the wind
correction angle according to this
formula:

T ORGCHOCA

;:;';,.L"! o , >

R
s T T S
3
S Ree

Gis 5

Sin Olwea = _YWC_
VTAS

The WCA values can be read in a graph
whose vertical scale represents the true
airspeed and whose horizontal scale repre-
sents the cross component. For better
readability and accuracy, the cross wind
bar has a smaller scale. Fig. 1.13/2

illustrates the construction of the graph 1000 20 40  — 60 vy [km/h]
using the example of the line for the wind !

correction angle 3°. Vias [km/h]

Since the method is not based on the re- b

production of the wind triangle, the calcu- 800 e}

lation of the drift triangle is not possible.
Note also that wind corrections to the left
have positive signs on this calculator.

600

314 418 523 Fig.1.13/2

1.13.2. Use of the computer for wind correction- and ground speed calculations

The following example explains the application:

true course 360°

true airspeed 800 km/h

true wind 225°/120 km/h
wind corr. angle -6.1°

ground speed 880.2 km/h

Step 1 (Fig.1.13/3):

The wind point W is marked on the transparent
disc. To do this, set course 225° and mark a point
at wind speed 120 km/h on the downward-facing
wind scale.

42



Step 2 (Fig. 1.13/4):

The disc is set to the course 360°. At the intersection
of the line TAS = 800 km/h and the vertical line
through the wind point one finds the WCA = - 6°. At
the upper scale the required heading 354° can be
determined.

Step 3 (Fig.1.13/5):

The value 357° (course 360° minus 0.5 WCA) is set
on the transparent disc. The value of + 80 km/h
(ground speed minus true airspeed ) can be seen
on the wind speed scale by means of a horizontal
line through the wind point. Therefore, 880 km/h are
determined as groundspeed.

<«----o W

1° 2°3°4° 5°6°

800 ///
Il

The rotation of the disc by half the amount of the WCA is a good approximation to increase or decrease the
longitudinal component of the wind vector so that the correct ground speed is obtained after addition to the
true airspeed. Table 1.13/1 and Fig. 1.13/6 show the necessary direction of rotation.

Analytical calculations demonstrate that the resulting errors are negligible (see Table 1.13/2).

wind point in sector A | rotation of clockwise ’
the disc
wind point in sector B| Py 0-5 WCA counter-
clockwise

able 1.13/1

relative ground speed calculated | ground speed analytically calcu-
windangle according to the sine lated over the longitudinal com-
theorem ponent using the NR-1 method
10° 119.635 119.632
45° 113.14 113.10
90° 97.98 97.98
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1.13.3. Use of the computer for wind determination from two drift values

The calculation of wind direction and wind speed from
two drifts is explained by the following example:

true heading 1 360°

true heading 2 090°

drift angle 1 +7°

drift angle 2 +10°

true airspeed 660 km/h

true wind direction 333.0°
wind speed 143.6 km/h

Step 1 (Fig.1.13/7):

At the transparent disk the first track 007° (HDG 1 +
DA 1 =360 + 7) is set opposite zero. A vertical line is
drawn from the intersection of the line 660 km/h with
the wind correction angle 7° (shown in red ).

Step 2 (Fig.1.13/8):

At the transparent disc, the second track 100°
(HDG 2 + DA 2 =90 + 10) is set opposite to zero. A
further vertical line is drawn from the intersection of
the line 660 km/h with the WCA 10° (shown as a
dashed red line). The wind point lies at the inter-
section of the two red lines.

Step 3 (Fig.1.13/9):

The wind point is rotated into the vertical wind speed
scale, from which a wind speed of 140 km/h can be
read. The wind direction is found at the lower arrow of
the scale at 332°.
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1.13.4. Use of the computer for wind determination from drift and ground speed

The calculation of wind direction and wind speed from drift angle and ground speed is explained by the

following example:

true track 352°

drift angle (DA) -5°

true airspeed (TAS) 800 km/h
ground speed (GS) 750 km/h
true wind direction 048.0°
wind speed 84.1 km/h

Step 1 (Fig.1.13/10):

On the transparent disk the track 352° is set
opposite to zero. From the intersection of the
line 800 km/h (TAS) with the DA - 5° a vertical
line (red in the drawing) is drawn upwards
(headwind).

Step 2 (Fig.1.13/11):

The transparent disc is rotated by the value
0.5 DA = 2.5° (counterclockwise - see table
1.13/1). That means course 354.5° is to set
opposite zero. The drawn line intersects with
the horizontal 50 km/ h - line (TAS - GS ) at
the wind point.

Step 3 (Fig.1.13/12):

The wind point W is rotated into the vertical
scale, where a wind speed of 84 km/h can be
read. The wind direction is found opposite the
zero at 048°

45

352

°3 4 5°6° 7°8° 9°10°
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1.14. Calculation of the wind triangle using the AVIONAUT computer

1.14.1. General

The AVIONAUT computer (see Fig.1.14/1 - diameter 203 mm) consists of two disks that have three logarithmic
scales at their perimeter. The upper disc additionally has three radial scales which work together with sets of
curves on the lower disc. For design details, see 1.14.3.

1.14.2. Calculation of wind correction angle and ground speed

The following example explains the application (see Fig.1.14/2):

wind angle 135° .
true airspeed 120 km/h Wl wind speed 40 km/h
wind speed 40 km/h W \é\
A
wind corr. angle -13.6° ground speed 144.9 km/h /
ground speed 144.9 km/h WCA 13.6°

wind angle 135°
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Step 1 (red highlighted in Fig.1.14/1):

The value 40 (wind speed 40 km/h) is placed below the value 120 (aircraft speed 120 km/h) on the outer
logarithmic scale. Then the value 14° is read off from the radial scale ,Vorhaltewinkel" (WCA) at the point of
intersection with the wind angle curve (135° / 45°).

Step 2:
With the same setting of the computer, a value of approx. 1.2 (green arrow in Fig.1.14/1) is read from the
radial scale ,Geschwindigkeitsfaktor® (speed factor) at the intersection with the wind angle curve (135°).

Step 3:
On the logarithmic scale ,,Fluggeschwindigkeit"

(airspeed) the multiplication 120x1.2 is carried
out by setting the red arrow opposite the value
120, so that opposite the value 1.2 a ground
speed of approx. 145 km/h can be read (red
arrows in Fig.1.14/3).

Step 4:
In the logarithmic scale ,,Geschwindigkeit Uiber

Grund” (ground speed) the flight time is deter-
mined by setting the flight distance opposite
the speed. The flight time is read on the radial
scale at the point of intersection with the curve.
The example in Fig.1.14/4 was chosen so that
the distance is equal to the speed and the flight
time is one hour.

1.14.3. Design details

€
Explanations to Fig.1.14/5: \<\ \
-

il
a wind correction angle \ } a
€ wind angle “\8\
% true airspeed —k =
u wind speed o W=KxV
w ground speed
k factor
Fig.1.14/

In this wind triangle, the sine theorem applies:

sina_ sing__u_sina sino_ Sin(E-0) |yweky . ke U SIN(E-0)

u v v~ sing u T w vV sina

Consequently, o and k are functions of the angle € and the quotient u/v, which can be represented in
the diagrams Fig.1.14/6 and 7, in which the angle € occurs as a parameter.
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0.5

0.5 0.2 0.1 006 . Y 0.05
v

These diagrams for determining the variables k and o are
displayed in circular form in the computer, where the ordinates
are the radii and the abscissa are circular arcs. In the figures
1.14/8 and 9 the speed v is described as ,,Flugzeugge-
schwindigkeit” (aircraft speed) or ,Fluggeschwindigkeit” (flight
speed), the speed u as ,,Windgeschwindigkeit” (wind speed), €
as ,Windeinfallswinkel” (relative wind angle), a as ,,Vorhalte-
winkel" (wind correction angle) and k as ,Geschwindigkeits-
faktor” (speed factor). The values u and v are opposed to each
other on the logarithmic outer scales, so that the radial scales
for ,,a“ and ,k“ stand at the correct ratio u/v over the curves.
The outer scale (see Fig.1.14/3) also serves to determine the
ground speed by multiplying the speed v by the factor k.
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The third radial scale is available for flight time calcu-
lations. At this the flight time T can be read, after the
ground speed w ("Grundgeschwindigkeit") was
opposed to the distance D ("Streckenlange") at the
logarithmic outer scales. The time could also be de-
termined in this way. Following the two other me-
thods, however, a curve was constructed which is
shown in Fig.1.14/10. In this figure, the horizontal axis
corresponds to the logarithmic outer scale. The curve
was chosen so that the vertical scale (which corres-
ponds to the radial scale of the computer) allows a
more accurate reading, especially for shorter flight
times.

[min]
I
15—
60
180
0.25 0.5 1 — 3 D1
w

Fig.1.14/10

1.15. Calculation of the wind triangle according to Campbell-Harrison

1.15.1. Calculation of wind correction angle and ground speed

Fig,1.15/1 shows a schematic sketch of the COURSE AND DRIFT CALCULATOR (CDC) invented by Campbell-
Harrison. It is a simplified version of the COURSE AND DISTANCE INDICATOR invented by Battenberg for naval
applications. The mode of operation consists in the mechanical reproduction of the wind correction triangle.

\NOP‘;- 25°

true heading

Vias = 90 kt

true wind 220°/ 40kt
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The use of the CDC is explained by the example shown in Fig.1.15/2.

Solution (see Fig.1.15/1 and 2):

1. The compass rose is set to the true
course 330°.

2. The wind direction shall be adjusted to
220° on a speed arm and the wind
speed shall be adjusted by means of an
adjustable mark at 40 kt.

3. A horizontal line from the 40 kt mark to
the vertical scale leads to a longitudinal
component of vw. = 14 kt.

4. The second speed arm (TAS arm) shall
be set so that the mark 90 kt is
vertically above the wind speed mark.

5. The TAS arm now shows the true
heading (between true heading 305°
and true course 330° the wind
correction angle is - 25°).

6. A horizontal line through the 90 kt mark
cuts the vertical scale at TASest = 82 kt.

7. The sum of the TASer and the longitu-
dinal component gives the ground
speed 96 kt (82 +14 ).

330°
X

) -
q@o VwL = 13.7 kt i
0
e T
(‘09 Vwe = 37.5 kt ;
Vs = 90 kt *
Vs, =818kt | &
gr)
he)
(0]
()
73
WCA = - 24.7° T
>
(o]
o

1.15.2. Use of the computer for wind determination from drift and ground speed

Due to the graphical simulation of the wind triangle in
the computer CDC, wind determinations from drift
angle and groundspeed are possible quickly and
easily, but only for air speeds below 110 (kt, m.p.h.,
km / h, m/s). Fig.1.15/3 contains the data of an
example whose calculation is shown in Fig.1.15/4.

Solution:
1. One speed arm is set to true heading 45° and its
mark to TAS = 80 k.

2. The second speed arm is set to track = 30°
(heading minus DA) and its mark is set to the
ground speed 100 kt.

3. The disc with the speed scales shall be aligned so
that the grid lines are parallel to the assumed
connecting line (virtual wind vector) between the
marks on the speed arms.

4. The wind direction 168° is indicated at the end of
the arrow on the centerline.

5. In the grid the wind speed is determined by
counting (here between 45 and 76) to 31 k.
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vy = 30.7 kt

VG=100kt —_—

VTAS = 80 kt

Opp =-15°
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true t\rack drift angle DA = 15°

windvector = 31 kt
(orientation from
TAS to GS)

. qo
168" ——— \ind direction (true) 168°

Note:

The CDC calculator has been designed for airspeeds below 110 (kt, m.p.h. or km/h). For TAS > 110 the
computer is nevertheless suitable, if relative speeds are used (TAS = 100 % and wind speed in percent of
TAS).

1.16. Calculation of the wind triangle according to Lyon

1.16.1. General

The PRACTICAL AIR NAVIGATION COMPUTER (see Fig. 1.16/1), invented by Thoburn C. Lyon reproduces
the wind triangle without using a diagram slide. As a result, the airspeed vector cannot be shifted vertically,
so that the wind vector must be found in a right-angled grid aligned to the wind direction and positioned
between the speed arc and the vertical axis (direction of the true course). The inscription "FOR TAS 90 -
110 MPH" on this variant of the Lyon calculator indicates that it was intended for aircraft flying at a cruising
speed of about 100 (m.p.h., knots or km/h). The errors that occur with true airspeeds of 100 + 10 are in the
area of 12 -15 %.

1.16.2. Calculation of wind correction angle, drift angle and ground speed

The following example explains the application:

true course 270°

true airspeed 100 kt
true wind 240°/25 kt
wind correction angle -7.2°
ground speed 1 77.6 kt
drift angle +9.1°
ground speed 2 79.3 kt
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Solution for the wind correction triangle
(shown green in Fig.1.16/1):

1.Set the triangle mark TC (true course) to
270° and the red wind mark to 240°.

2.The wind vector, which shall have a
length of 5 intervals (equivalent to 25 kt
wind speed), shall be fitted so that it be-
gins at the TAS circle of 100 kt (arc
through the center point) and ends
on the ground speed axis (centerline).

3.The ground speed is about 22 kt lower -3
than the true airspeed and one gets -
GS =100 - 22 = 78 kt.

4. In the drift field the WCA is approx. - 7°.

Solution for the drift triangle (shown

magenta in Fig.1.16/1):

1.Set the triangle mark TC (true course) to 270°
and the red wind mark to 240°.

2.The wind vector, which must have a length of
5 intervals (corresponds to 25 kt wind speed), begins
at the centre and ends at the -20 kt speed line, so that a
ground speed of GS =100 - 20 = 80 kt results. In the drift
field a DA of approx. + 9° is determined.

Note:
Another variant of the Lyon calculator is labeled in the
centre axis with speeds from 60 to 140 (see Fig.1.16/2).

1.16.3. Use of the computer for wind determination from drift and ground speed

The following example explains the application:

true heading 300°
true airspeed 110 kt
drift angle +10°
ground speed 125 kt
true wind direction 179,0°
wind speed 25.4 kt

Solution (see Fig.1.16/2):

1. The triangle mark TC (true course) is set to 300°.

2. The wind point is found and marked at the intersection of the +10° drift line and the 125 kt ground

speed arc.

3. A connecting line shall be marked between the wind point and the point TAS 110 on the centre line.
4. The disc with the wind speed grid shall be rotated so that the wind direction lines are parallel to the line

drawn. Then the wind direction of 180° can be read from the red triangle.

5. The length of the wind vector can be determined with the help of the intervals of the grid, which have a

distance of 5 kt. The wind speed is therefore 5 x 5 = 25 kit.
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1.17. Calculation of the wind triangle according to Kalaschnikow

1.17.1. General

The computer NRK-2 (see
Fig.1.17/1) reproduces the drift
triangle. For this purpose the
compass rose contains the
concentric circles 3, the radius
of which corresponds to the
length of the wind vector in
percent of the TAS (highlighted
red the 20% circle). The air
speed vector ends at the
center of the compass rose
and has the length 100%. Its
starting point is outside the
instrument. It is the center of
the ground speed arcs 2,
marked 80, 90, 10, 20 and
30% (highlighted red the 10%
arc). In addition, lines 1 of the
drift angle start from this point
(highlighted red the line -10°).

2
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1.17.2. Calculation of wind correction angle and ground speed

The operating principle of the computer is explained using the following example:

true course 360° wind corr. angle -12.2°
true airspeed 100 kt ground speed 119.0 kt
true wind 225°/ 30 kt (=30%TAS)

Solution (see Fig.1.17/2):

After drawing the wind point W at the intersection of the wind angle line 45° and the wind speed circle
30%, course 360° is set. The drift triangle shown in this way provides a ground speed of 123 kt and a drift
angle of 10°. In contrast, the analytically calculated (green shown) wind correction triangle has a ground
speed of 119.0 kt and a WCA of 12.2°. The differences between the two wind triangles are due to the
different wind angles. This error can be reduced by turning the air speed vector by 10° to the left (this
means the numerical equation of DA and WCA). So one gets a wind triangle, (in the sketch with red drift
lines) which resembles the wind correction triangle, because its ground speed is 119.8 kt and its wind
correction angle is 11.8°.

360°

360° %o

TAS =100 kt

GS =123 kt
wind

correction
triangle

first drift
triangle

GS =120 kt
GS =119 kt

second
drift
triangle
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1.17.3. Use of the computer for wind determination from drift and ground speed

Fig.1.17/3 shows how the wind point and
thus the direction and size of the wind vector
can be determined if heading (here 360°),
drift angle (here -12°), true airspeed and
ground speed (here 120% TAS) are known.
For this example one gets a wind speed of
30% TAS (exactly 30.4) and a wind direction
of 125° (exactly 124.8°).

The following example is shown in Fig.1.17/4:
On the true heading 060° a drift angle of +6°
was observed. Therefore a pencil line is drawn
on the computer over the drift line +6°. The drift
line 10° on the heading 360° had already been
drawn before. The two lines intersect at the
wind point W.

Fig.1.17/5 shows the following example:
On the true track 060° a ground speed of
110% TAS was observed. On the
computer the 10%-arc was marked with
a pencil. Before that, a pencil line had
already been drawn over the arc 20% on
the track 360°. The two curves intersect
at the wind point W.

360°

60°
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1.18. Calculation of the wind triangle according to Sterligow

1.18.1. General

The computer Wetrochet, invented by

B. W. Sterligow (see Fig.1.18/1), repro-
duces the wind triangle. The rotatable
compass rose can be adjusted to the air-
speed (here 100) by moving it along the
longitudinal axis. To mark the wind point,
the rose must also be set to the wind
direction (here 90°). For the calculation
of the drift triangle the wind point must
be drawn from the center to the bottom
(here the red point on the 30 km/h
circle). If the wind correction triangle is
to be calculated, the wind vector must
point upwards (green point).

1.18.2. Calculation of the drift triangle

Fig.1.18/2 shows this drift triangle:

true airspeed 100 km/h

true heading 225°

true wind 90°/ 30 km/h

drift angle +9.9°

ground speed 123.1 km/h
Explanation:

The compass rose is set to 225° and its center
to 100 (TAS = 100 km/h). The pointer is then
placed at the wind point. The drift angle (+10°)
is readable at the upper scale and the ground
speed (123 km/h) at the pointer.
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1.18.3. Calculation of the wind correction triangle

Fig.1.18/3 shows this example of a wind
correction triangle:

true airspeed 100 km/h

true course 225°

true wind 090°/ 30 km/h

wind corr angle -12.2°

ground speed 119.0 km/h
Explanation:

Compass rose and pointer are adjusted so
that the wind point is at 100 (TAS) on the
pointer and the course setting is 225°.

The wind correction angle ( - 12°) is indicated
by the upper scale and the ground speed
(120) by the pointer after turning it to the
center of the rose. The procedure is relatively
time-consuming, so that it is preferable to
correct the drift triangle according to the
method described under 1.17.2. This means
that first the drift triangle is calculated and
then the course is corrected by the drift
angle. Consequently, the compass rose must
be set to 215° (225 - 10). As shown in
Fig.1.18/4, these values can then be read:

WCA = - 12,5° (true value: - 11.84°)
ground speed = 120 km/h
(true value: 119.75 km/h)

1.18.4.Use of the computer for wind determination from drift angle and ground
speed and from two drift anales

The calculation of wind speed and wind direction from the data drift angle, air- and ground speed, using the
Wetrochet is carried out in analogy to the procedures described under 1.17.3. and 1.17.4. so that their
description is not given here.
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1.19. Calculation of the wind triangle according to Immler

A copy of the "Universal diagram for the solution of the wind triangle" introduced by Werner Immler shows
Fig.1.19/1. It is used to calculate both the drift triangle and the wind correction triangle. The simplified
schematic representations below are multicolored for better understandability. Since this possibility was
omitted in the original, only the parallel arcs are represented by extended lines (drawn red in Fig.1.19/3 and 4)
while the concentric arcs (drawn green in Fig.1.19/3 and 4) are described by crosses lined up next to each
other. Although this wind triangle calculation is rather based on a graphical method, it is inserted here, not
least because numerous mechanical computers make use of this procedure.

direction

/ of course

TN, e,
’i&g;‘}" W drift scal
y 4;..\‘:%;‘:_ '-" ! _ ¢ b 20, ) rift scale
SO SN 7 S0 AN
TN . . N " ) ' angle
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s
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The calculation of the wind triangle with the aid of Immler's "Universal Diagram" is described using the
following example chosen by the inventor himself (Fig.1.19/2):

true heading / course 054°
true airspeed 130 km/h
true wind WNW/12 m/s

293°/43.2 km/h / 0.33 TAS

wind angle 59°

drift angle +13.6° Nt
ground speed 1 156.9 km/h

wind correction angle -16.5°

ground speed 2 146.8 km/h

In Fig.1.19/3 the right half of the diagram is
shown, in which first the wind point W is drawn,
namely at the crossing point of the wind angle
59° (line O-4) with the speed circle 1.33 (wind
speed 0.33 TAS).

course

Description of handling:

A vertical line from wind point W
upwards intersects the wind
angle scale at WCA = 16.5°(1). A
line from point A through wind
point W intersects the outer
scale at drift angle DA =14° (2).
The parallel (red) arc of the circle
(8) crossing the wind point has a
value of 1.13. The ground speed
in the wind correction triangle is
therefore GS2=1.13 x130 = 146.9
km/h. The concentric (green) arc
around point A through the wind
point has the radius 1.21 (5).
This gives a ground speed in the
drift triangle of GS1 =1.21x130 =
157.3 km/h.

Fig.1.19/3
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Description of the construction (Fig.1.19/4):

The lines MW and MW’ correspond to the wind vector and the line MA to the airspeed. Therefore the tri-
angle AWM represents the drift triangle and the angle M-A-W is the drift angle, which can be read at point D.
The airspeed vector AM is of the length of the circle radius (1 = 100 %). The distance AW corresponds to
the ground speed in the drift triangle and its length can be determined at the concentric (green) arcs around
point A (here at 1.2, i.e., GS = 1.2 TAS).

Since the distance AW’ has the length 1 (100% TAS), the triangle A’-M-W “ corresponds to the wind
correction triangle. The line A'M corresponds to the ground speed, the line A'W’ to the true airspeed and the
angle W’-A’-M to the wind correction angle. Its amount can be read off from a vertical line through the wind
point in the wind angle scale at point C. The triangles MCE and A'BW" are congruent, because the lines BW’
and CE have the same length (wind component vwc) and the lines MC and A'W” have the length 1.
Therefore, the angles E-M-C and W’-A"-B must be the same. The triangles MWZ and A MW" are also
congruent. In the triangle MWZ the distance MZ corresponds to the ground speed vector. Its length is
determined by the parallel (red) arcs of radius 1. Such an arc through the wind point intersects the centerline
at point G. The distance MG is therefore equal to ground speed minus true airspeed. Since the figure 1.12
can be read at point G, the ground speed is 12% higher than the true airspeed.

vy
A

il
b
N
)

NEA

<\
e

A’ Fig.1.19/4
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1.20. Calculation of the wind triangle according to Coutinho

1.20.1. General

Fig.1.20/1 shows a remade of the ,,Corrector de Abatimento® of Gago Coutinho. The device was originally
intended for the determination of the wind from drift angles measured on two headings which differ by 45°.
The scales of the two pointers are therefore offset by this angle.

1.20.2 Application for the calculation of drift- and wind correction angle and
ground speed

In principle, the calculator is based on the wind diagram described under 1.19., which is why no further
explanation is given here.

1.20.3. Application in the calculation of the wind from two drift angles

The calculation of wind direction and wind &
speed from two drifts is explained by the
following example:

true heading 1 090°

true heading 2 135°

drift angle 1 -6°

drift angle 2 -13° J‘ VAT PN

true airspeed 100 kt &’:":‘; :‘ !”,7{'4“@@ o
b\t LS \

true wind direction 239.7° —— ) oL

W|nd Speed 254 kt ? 2 : S gg = = = - SV

Fig.1.20/2 shows the necessary settings on the computer. The pointers rotating around points A and B cross
each other at wind point W after being adjusted to the two drift angles (1 and 2). At 3 the wind angle of 150°
can be read. For the calculation of the wind direction see Fig.1.20/3. If the wind falls from the left during the
first drift measurement (i.e. drift angle positive), the second drift measurement must be made on a course
which is 45° lesser. The situation is then inverted on the computer.
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At Fig.1.20/3 lines AM and BM correspond to airspeed vector (marked red). Its length was chosen in the
interest of a higher accuracy of the length 2 R (R = radius of the outer circle). The inner circles serve to
determine the wind or ground speed and are therefore labelled with relative speed specifications (1.1
means 10 % above or below the true airspeed). The drift angle DA1 = - 6° is measured on the heading
TH4 = 90° and the drift angle DAz = - 13° is measured on the heading TH2 = 135° which is larger than THj1
by 45°. In the two drift triangles A-M-W and B-M-W, the lines AW and BW are the tracks that intersect at
the wind point W. Thus the wind vector M W is well defined. The wind direction & results from the wind
angle a = 150° and the TH+4= 90° to 240° (90 + 150). The wind speed is determined along the circular arcs.
In this example, about 1.25 is found, i.e. the wind speed is 0.25 x TAS = 0.25 x 100 kt = 25 kit.

o R

14 15
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1.21. Calculation of the wind triangle according to Mailloux

1.21.1. General

Fig.1.21/1 shows the ,,Cercle Calculateur” invented by Louis-Joseph Mailloux. The computer has 360 cuts around
the perimeter through which threads can be fastened. In this way, points or lines can be defined without the need
to make any entries.

1.21.2. Use of the computer for drift-, wind correction- and ground speed calculations

Fig. 1.21/1 illustrates the handling of the device when calculating the wind triangles using the following
example:

true airspeed 120 kt

true heading/course 360°

true wind direction 050° (wind angle 50°)
wind speed 40 kt (0.33 TAS)
wind correction angle +14.79°

ground speed 1 90.31 kt

drift angle -18.0°

ground speed 2 99.1 kt

1. To mark the direction of the
wind vector, first thread (1 - 1)
is fastened between the 15°

points 050° and 230° of the ?rirg:wgle
outer scale. On this line the i
wind point W is on the
position 0.33 TAS. \\\\>30 3%% //// 7
2.A second thread (2 - 2) is Q \320 30 4 //////// PS
fastened between the zero QS 00 AT
point of the outer scale and N 319, e >’ 2
the wind point W. This thread S 500 (% X e 2
ends in the lower outer scale SRR N 2 -
at the drift angle - 18°. =290, A % 29070~ 2 ‘F’)"c')ri‘nt
3. The dashed green line along = ; =
the green (concentric) arcs = 2803, S 280807 =

through the wind point ends

N
N
S
0
S
o
~
o
o
X
o\
5
o
~
=)
w

on the speed scale at 0.83, so P Pt Vi N
that in the drlftltrlangle the = 560100 T\ | N \ 260100 =]
ground speed is = MY Y= y oS =
0.83 x120 kt = 99.6 kt. = 7O O N3, S
4.The dashed red line along TN ><>< TN A%, \
the red (parallel) arcs through —/ 24 / § 120\
the wind point ends at 0.74 < #5704 Y930 S
on the speed scale, so that S s TR 35 o . wind
in the wind correction tri- ///// 026 P ok 2\ corr.
angle a ground speed of @ ////// 210”° /160 A \ triangle
0.74 x 120 kt = 90 Kt results. 1), % W
5.From the wind point along the drift o A
vertical lines upwards one triangle (N
finds the wind correction 18°

angle of -15°.
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1.21.3. Use of the computer for wind determination from drift and ground speed

Fig.1.21/1 is also used for the description of the wind calculation from a drift angle (-18°) and a ground
speed (99 kt). First a thread is fastened between the zero point of the outer scale and the point DA = 18°
on the drift scale, on which the wind point must lie at the position GS : TAS = 99 : 120 = 0.83. Conse-
quently, the wind point is found at the intersection of the green speed circle 0.83 with the drift line. For the
determination of the wind direction a second thread is fastened through the wind point and the center,
which cuts the outer scale at the wind direction 050°. The wind point lies on a circle of the radius 0.33, so
that a wind speed of 0.33 x 120 kt = 40 kt results.

1.21.4. Use of the computer for wind determination from two drift angles

Fig. 1.21/2 illustrates the handling of the @
device when calculating the wind from two

drifts using the following example: \ ®
.

T\(Wm W WW 0
true heading 1 360° N s 110 3 2 1 My
true heading 2 090° 330 3 2
° | +—G3—— //
drift angle 1 +14° 295 \\ % L ’__é*\\\ 14 ///% @
drift angle 2 +10° SRS L == i S 2 7
true airspeed 100 kt % T T N
s O N 2
=
true wind direction 295.0° \\29070 ¥ ?é ///7’—%7-=§\ x 29070 2
wind speed 24.5 kt S, Z? A §8<\ & i =
50 /% j & y =
d\w . oS =
27090 0,7 06 05-04 03?'251( 0,1 \ 03| 04,806 07 27090—2
&SP gl . =
260100 "\“ j E a e ‘.‘ /> 2601005
= - ‘ A= ‘.‘ S E
110 *‘14 She < !’ % 3 250 =)
50 ‘5, LS —E3 " M0
T /130G )1’ ‘!--!{' '150240
27 oL E LB UG 20 ®)
13620 < T =15 =3 < \’ “WM 230 N
230 s !~ i JA A g0 AN
%, [ ¥ e\ 10\ 8
150 5k 5 |20 D
%, 719" o | P72 o0 RN
Y 200 170 190 160 \\\
190 1§g 170 \\\\\
LTI ST win

Solution:

First a thread is fastened which corresponds to the 1st course of 360° (dashed line 1), but it is fixed in the
notch 28° (2x14). Because of the double radius, this corresponds in good approximation to a rotation
around the 1st drift angle (14°). Line 2 represents the first track. In the same way, a thread is fastened in
the direction of the second course (060°) (dashed line 3). After rotation by 20°(doubled second drift angle
of 10°), this represents track 2. It must therefore be fixed at 80° (60° + 2x10°). At the intersection of the

threads 2 and 4 one will find the wind point.
A third thread (5) is fastened so that it lies above the wind vector running from the centre to the wind point.

The wind direction thus results in 295°. The wind speed is determined by concentric circles. Since the wind
point lies between the circles 0.2 and 0.3 (about 0.25), the wind speed is about 25 kt (0.25 100 kt).
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1.22. Calculation of the wind triangle according to Peters

1.22.1. General

The PORTLAND DEAD
RECKONING CALCULATOR
(see Fig. 1.22/1), invented by
M. W. Peters mechanically
reproduces the wind triangle.

1.22.2. Calculation of the
wind correction triangle

Fig.1.22/1 shows the device in the
setting necessary for the calcu-
lation of the wind correction
triangle in the example shown in
Fig.1.22/2 (use the red markings
and inscriptions). The discs 2, 3
and 4 are rotatably arranged on the
base plate 1. The cursor 5 with its
speed scale can be moved hori-
zontally and vertically. First, the
compass rose (disc 2) is set so that
the course 0° is opposite the
DATUM mark of plate 1. Then the
red mark on disk 3, which has a
wind speed scale (called TIDE),
must be set to the wind direction
045°. The cursor is then moved so
that the zero point of its scale is
above 5 (wind speed 50 kt). After
turning part 4 with its speed scale
so that the mark 10 (TAS = 100 kt -
here marked by the red inscription
SHIP SPEED) intersects the
vertical scale of the cursor 5, the
wind correction triangle is repro-
duced (hatched red in Fig.1.22/1).
The red inscription COURSE TO
STEER on part 4 refers to a red
triangle on which the HEADING of
021° can be read. The ground
speed of 58 kt (marked by the red
inscription SPEED MADE GOQD) is
determined at the intersection of
the scales of disc 4 and cursor 5.

PORTLAND

PATE

DEAD RECKONING CALCULATOR

NT NO. 1530 487

0655.33
(1084)
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1.22.3. Calculation of the drift triangle

O
DEAD RECKONING CALCULATOR ] " (1084)
PATEN]

Fig.1.22/3 shows the setting necessary for the
calculation of the drift triangle in the example of
Fig.1.22/2 (the green markings and inscriptions
must be applied). Analogous to the wind
correction triangle, after setting the compass
rose to 360°, the green mark on the TIDE scale is
set to 045° and then the zero of the cursor scale
is set to the 5 (50 kt wind) of the TIDE scale. Turn
disc 4 to the left until it crosses the vertical scale
SHIP SPEED at 10 (TAS = 100 kt). Thus the drift
triangle, hatched green in the drawing, is repro-
duced. Now the track of 331° is read from the
green triangle on disc 4 (next to the green in-
scription TRACK MADE GOOD) and the ground
speed of 74 kt is read on the speed scale
(marked by the green inscription SPEED MADE
GOOD).

280

270

9460

[B1) engtand 08l

© M.W.PETERS 1976

1.22.4. Use of the computer for wind determination from drift and ground speed

The following example explains the application (see Fig.1.22/4):

true heading 100° true wind direction 251.4°
true airspeed 100 kt wind speed 54.4 kt
wind corr. angle -10°

ground speed 150 kt

1. The true track 090° is set
/ opposite the mark DATUM.

0655.33

9% —— 5 The TAS - scale (SHIP SPEED)
is to set on the true heading100°.

PORTLAND
DEAD RECKONING CALCULAT

PATENT NO. 1 530 487

19

Q

3. The cursor is moved so that
the mark 150 (GS) on the

SPEED MADE GOOD scale is
brought on the mark 100 (TAS)
on the SHIP SPEED scale.

10
[ A R R IS

4. The TIDE scale (wind speed)
will be so adjusted that it is

above the zero point of the
cursor scale.

250

A0

-
~_

S
)
WO
WORRy 8

T

5. In the TIDE scale is shown
at the zero point of the cursor

I scale a wind speed of 54 kt.

08z

Eé

)
i

09

AN
olz

Eﬁ england

Fig.1.22/4 6. The red mark on the TIDE
scale indicates the wind

direction 251°.
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1.23. Calculation of the wind triangle according to Batori

1.23.1. General 20 \\(:{\i:’(\ﬂh;\ 0 f?o“‘“““-, :
10 e y o5
With the computers B-24 and 5 \\{‘\\\c\;o \003 20, Oﬁf‘%?/z ”
B-26 invented by Oscar Batori, O\ 0\ Lk IR 1MP. G 60
the wind triangle is calculated ' > W% o N ' “
logarithmically with the help of \\f ' _“fo
the longitudinal and the cross Q \ 7/
components of the wind. N ¥

Fig.1.23/1 shows an enlarged
view of the type B-24.The two
computers are of identical
construction and differ only in
size. The diameter of the type
B-24 is 76 mm. The variant B-26
has a diameter of 100 mm and
can be mounted on the cockpit
sideboard. In the logarithmic
outer scales the arbitrarily
chosen quotient 62:70 was set.
The result 0.88 is shown oppo-
site the figure 10 (green arrows).
The corresponding angles are
42.5° for the tangent function,
62.3° for the sine function and
27.6° for the cosine function.
How these values are displayed
in the drift window can be seen
in the zoomed illustration

(Fig. 1.23/2).

|

1.23.2. Use of the computer for wind correction- and ground speed calculations

010° 0400

L/

The application is described in the following example (see Fig.1.23/3): € }
S

VWL
true wind direction 220° Y [
wind speed 60 kt 2200/ we
true airspeed 120 kt v
true course 010° % G
awca 14.5°
ground speed 168.2 kt
cross component of the wind vwc 30 kt
longitudinal component of the wind vw. 52.0 kt Awca

4
Fig.1.23/3
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Step 1: To determine the wind angle the aircraft symbol on the compass rose is placed on the course
(010°) and the wind angle € = 30° is read opposite the wind direction 220° (see red arrows in
Fig.1.23/1).

Step 2: After setting sin 30° in the drift window, the cross component 30 can be read in the logarithmic outer
scale opposite the vw = 60 kt (multiplication in logarithmic scales: vwc = vw *sin € = 60 kt x0.5 = 30 kt).

Step 3: After setting cos 30° in the drift window, the longitudinal component 52 kt can be read in the
logarithmic outer scale opposite the figure vw= 60 kt (vwL = vw *cos € = 60 kt x0.866 = 52.0 kt).

vwe 30
Step 4: In Fig.1.23/3 the following applies: sin o wca= = o wea= 14.5°

120 120

After the quotient 30/120 has been set in the logarithmic outer scale, a wind correction angle of
approx. 15° can be read in the sine scale of the drift window (division in logarithmic scales).

Step 5: In Fig.1.23/3 the following applies: vraseft = Vas * cos awca = 120 kt x0.97 = 116.2 kt

After setting cos 14.5° in the drift window, the vrasert= 116 kt can be found in the logarithmic outer
scale opposite the 120 kt mark (v1as).

Step 6: The following applies to va: Va = VTasert + vwL = 116 kt + 52 kt = 168 kt.

1.24. Calculation of the wind triangle according to Goerz

1.24.1. General

With the "Goerz
wind and speed
calculator”

(see Fig.1.24/1)
the wind triangle
is calculated via
an alignment table 4
which has the
angle scale 2 and
the speed scale 1.
The lengthwise
movable and
rotatable pointer 3
can be locked by
means of the
adjusting screw 4.
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1.24.2. Use of the computer for wind correction- and ground speed calculations

The following example explains the application (see Fig. 1.24/2) :

a

WCA

wind angle €’ 45° qlh >«/

true airspeed 100 km/h Vo 100 K ) B=g'+a

wind speed 10 m/s (36 km/h) TS WCA

wind corr. angle -14.7° o Ve = 122.2 km/h / \< €'=45°

ground speed 122.2 km/h Apyca = 147 v,y = 36 km/h

Fig.1.24/2

Solution (Fig.1.24/3):

1. The bearing of the pointer is set so B A 0
that its centre line (drawn in red) runs \ L \
through the wind speed 36 km/h and
the wind angle 45°. The pivot point A /
of the pointer is then fixed. If the /7 /
pointer is now adjusted so that it / {

intersects the speed scale at the 122.2 km/h
value 100 (TAS = 100 km/h), a WCA
of approx. 15° (true value 14.7°) can
be read at the angle scale below the

pointer (dashed red line).

2.The bearing of the pointer is set so ;
that its centerline runs through the 80
wind speed 36 km/h and the wind
angle 45°+15° = 60° (drawn in
green). The pivot point B of the
pointer is then fixed. If the pointer is
now adjusted so that it intersects the
angle scale at the value 15°, the
ground speed of approx. 120 km/h
(true value 122.2) can be read off
from the speed scale below the 700 0
dashed green line.

Explanation:

The length of an unknown triangular side is calculable if the other sides and an angle or two angles and one
side are known. In the first solution step, the unknown angle awca is calculated using the known speeds vw
and v1as as well as the known wind angle €’ (red alignment lines from point A). In the second solution step,
the unknown ground speed vg is calculated using the known wind speed vw and the angles awca and
(green alignment lines from point B). The angle f results to B = 45° + awca = 45° + 15° = 60° (see Fig.1.24/2).
A triangle of two sides and the included angle cannot be reproduced in this diagram. However, since this
problem occurs when calculating the wind from airspeed, groundspeed and wind correction angle, such a
wind calculation is not possible.
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1.24.3. Construction of the alignment line diagram for triangle calculations

Fig.1.24/5 shows the diagram schematically. It is based on this arbitrary choice:

- length of the angle scale AB

- length of the distance scale AC

- the angles o and

- the position of point E (here chosen 50) on the distance scale.
The division of the angle scale was constructed over a linear division of the line DC. The connecting
lines of the points F" and F”, e.g., through the point E lead to the points 40° and 35° on the angular
scale.
The calculation of the position of the other line points is explained by an arbitrarily chosen triangle
(see Fig.1.24/4).

RN

45°

50

20,7° Fig.1.24/4

100

The line from the point 45° on the angle scale over the point E (on position 50 of the speed scale)
leads to the point F on the line CD (guide rail of the pointer). The connecting line from point a= 20.7°
on the angle scale to point F intersects the speed scale at point 100.

0° 20.7° 35°  40° 45° 90°
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1.25. Calculation of the wind triangle according to Jensen

1.25.1. General

The NAVIGATIONAL COMPUTER invented by H. M. Jensen calculates the wind triangle graphically. Fig.1.25/4
shows the calculator (diameter of the original device 105 mm).

1.25.2. Use of the computer for wind correction- and ground speed calculations

The following example explains the application (see Fig. 1.25/1) :

true wind direction 315°

wind speed 40 kt 3150

true airspeed 120 kt 76.4°

true course 090° —
X<135°

OWCA -13.6° \ 90°

ground speed 144.9 kt V= 144.9 kt

true heading 076.4° Opea= 13.6°

1.Calculation of the wind angle (see Fig.1.25/2):

The red GS arrow is set to true course 90° on the
black compass rose and opposite to the black wind
direction 315° is shown on the red outer scale the
wind angle 135°. At the wind angle the drift direction
can be determined. In this case a right drift is created
and the heading is lower by the wind correction angle 135°

than the course. \ course

sio)

2.Entry of the wind point (see Fig.1.25/3):

GS

After the red arrow
(GS) was shifted to
the north, the wind
point is marked with
a pencil in the inter-
section of the 40 kt
-line (wind speed)
and the line of the
wind angle (135°) .
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3.Calculation of the ground speed and the wind correction angle (see Fig.1.25/4):

145

13.5

The transparent disc is
rotated until the wind
point above the line

TAS = 120 kt is stand-
ing. Under the wind point
a wind correction angle
of 13.5° can be read. The
ground speed 145 kt is
indicated under the red
arrow (GS mark).

1.25.3.Use of the computer for wind determination from drift and ground speed

The following example explains the application:

magnetic heading 270° wind speed 69.1 km/h
drift angle +10° wind angle 141.1°
variation 10°W magnetic wind direction 138.9°
true airspeed 250 km/h true wind direction 128.9°
ground speed 300 km/h

Solution:

1. Determination of the wind point (see Fig.1.25/5):

1a. The ground speed —__
arrow is set to
300 km/h.

1b. At the intersection
of the lines
TAS = 250 km/h and
DA = +10°, the wind
point is marked.
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2. Determination of the wind angle and the wind speed (see Fig.1.25/6):

2a. The ground speed arrow
will be set to North.

2b. Under the wind point
the wind speed (69
km/ h) and the wind
angle (141°) are found.

3a.The ground speed arrow is
positioned above the
magnetic track 280°.

3b. Opposite the magnetic wind
angle of 141° (red outer scale)
the magnetic wind direction
139¢ is found (black inner
scale). The true wind direction
results from the variation of 10°
West to 129°.

Note: The wind angle of 141° occurs in the red scale twice. Select the angle with the relevant drift direction (right
in this case).

1.25.4.Description of the process and the design

In the Jensen calculator the ground speed is represented as ordinate. The airspeeds are applied to them at a
distance of one degree WCA. In order to complete the wind triangle, the wind vector, which can assume different
directions (wind angles) and different lengths (speeds), must be drawn into this system. This is only possible in one
place. If, for example, the angle between groundspeed and wind vector is 45° and the wind speed 20 kt, the wind
vector drawn in red in Fig.1.25/8 is defined to scale and direction. At an assumed air speed of 100 kt, a wind
triangle is obtained in which the WCA is approx. 8° and the ground speed approx. 113 kt.

In the Jensen calculator, the wind triangles were arranged circularly for better handling, with the ordinate (ground
speed) representing the outer circle. The airspeeds applied to these at different angles (WCA) are thus formed in
a spiral scape. This means that all sides of the wind triangle including the wind vector to be fitted are curved
lines (see Fig.1.25/9).

The wind triangle shown in Fig.1.25/8 is highlighted in white in Fig.1.25/9.
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wind vector (wind speed=20 kt, €=45°/135°)

wind triangle

TAS = 100 kt

wind vector

GS =113 kt

1.26. Calculation of the wind triangle according to Gillmer

1.26.1. General

The GILLMER COMPUTER invented by T. C. Gillmer calculates the wind triangle mechanically using two
diagrams. Fig.1.26/1 shows its part one with the compass rose diagram and Fig.1.26/2 the second transparent
part with the drift angle diagram. With this method, the triangle calculation is performed in principle in the same
way as with the diagram slide computer (see 1.2).
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1.26.2. Use of the computer for wind correction- and ground speed calculations

Both parts are placed one over the other to build a complete wind triangle. Then wind correction angle
and ground speed can be read directly (see Fig. 1.26/3).

The following example explains the application:

true wind 360°/50 kt
true airspeed 220 kt
true course 315°

OLWCA +9.3°
ground speed 181.8 kt

Solution (see Fig. 1.26/3):

1. On part 1 the wind point is marked at 50 kt (black scale) and 360°.

2. Part 2 is thus aligned with part 1, that the axis of symmetry (arrow) is above the course line 315°.

3. Part 2 will be shifted along the course 315° so that the highlighted dashed TAS-circle marked 220
(green digits) is going through the wind point.

4. A wind correction angle of +9° is determined at the wind point.

5. At the center of Part 1 at the green scale of the Part 2, the ground speed of 182 kt is found.
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1.27. Calculation of the wind triangle according to Plumly

1.27.1. General

The PLUMLY COMPUTER calculates the wind triangle mechanically using the sine theorem and logarithmic
scales. Only wind angles below 90° are used. The definition of the sign of the WCA and the sign of the differen-
ce GS - TAS is facilitated by inscriptions in the four quadrants (e.g. TAIL WIND R.H. or HEAD WIND L.H. and +
HEADING or - SPEED). Fig.1.27/1 shows the side with the sine scale (diameter of the calculator 95 mm). The
sine scale is divided into two sections (1°-10° and 10°- 90°), placed opposite each other. The sine values whose
angles are opposite to each other differ by a factor of 10, which is irrelevant for logarithmic calculations.. One
example is highlighted by red arrows (sin 3° = 0.0523; sin 31,53° = 0.523). This trick made it possible to shorten
the sine scale to half its length.
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1.27.2. Calculation of wind correction angle and ground speed

The following example explains th lication Fig.1.27/2):

true course 360° wind correction angle 3.31°
true airspeed 120 kt ground speed 80.5 kt
true wind 010°/40 kt

Solution:

The TC index is set to 360° (N) on the inner scale and the wind angle 10° is indicated opposite the wind
direction 10° (1). Then the figure 12 (TAS) in scale B is positioned opposite the wind angle 10° in scale C
(2). At the figure 40 (wind speed) in scale B one finds in scale C the WCA = 3.3° (3). The ground speed is
calculated to 80 kt (4) opposite the figure 6.7° (wind angle - WCA = 10° - 3.3°). A help is the additional
information (5):

HEAD WIND R.H.

- SPEED (GS < TAS)

+ HEADING (HDG = CRS + WCA).

1.27.3.Use of the computer for wind determination from drift and ground speed

The following example explains the application (see Fig.1.27/3):

true heading 090°

true airspeed 100 kt

drift angle -16.5°

ground speed 124 kt

wind angle 61,8°

true wind 208.2°/40.0 kt
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As already described under 1.3.2., it is efficient to use the method of "fitting" the drift angle between the
values of the airspeed and ground speed for the wind calculation by means of log sine scales. In order to
"fit" the drift angle of 16.5° between the digits 10 (corresponds to TAS = 100 kt) and 12.4 (corresponds to
GS = 124 kt) the sine scale must be brought into the position shown in Fig.1.27/3. Then the wind speed of
40 kt can be read opposite the drift angle 16.5° and opposite the 12.4 (ground speed 124 kt) the wind
angle 62°.
Since the drift angle is negative (drift to the left) and the ground speed is greater than the airspeed, there is
a tailwind from the right. After setting true course (TC) to 90° the wind direction is found in the quadrant
with this inscription:

> TAIL WIND R.H. <

Opposite the wind angle of 62° the wind direction 210° is found here.

1.28. Calculation of the wind triangle according to Braun

The ,BRAUN COURSE FINDER*" allows the direct determination of the true heading and the ground
speed depending on the wind and airspeed vectors. The device consists of a board made of transpa-
rent material which is placed on the map. The handling is facilitated by a belonging ruler of the same
speed scale. Using this example of a flight from point A to point B the application is described:

true course 097°

true airspeed 130 km/h

true wind 045°/ 10 m/s (36 km/h)
true heading 084.4°

ground speed 104.7 km/h
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Solution:

1. The route between point A and point B is drawn on the map.
2.The wind point W is marked from the center M to the outside (at the intersection of the circle 10 m/s and the

45° line).

3. The course finder is aligned parallel to a longitudinal circle on the map in such a way that the wind point lies

on the route.

4.From point A (intersection of the route with the speed circle 130 km/h) a line through the centre M points to
the true heading 85°. The triangle WMA now represents the wind triangle with the sides MW (wind vector),
MA (airspeed vector) and AW (ground speed vector).

5.The groundspeed vg is determined between points A and W at 105 km/h using the ruler belonging to it,
which has the same scale as the disc. This can also be calculated analytically using the formula:

Vo = 13020
AM

meridian

' 50 1(\)0

140
130
110

POLNTA A | 7/ 7 4767810121415 15 2 O 90
D T S I T
R et e 7 T 177
19 SO

/

POINT B
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1.29. Calculation of the wind triangle using the computer DME plus

1.29.1. General

The computer is originally designed to determine the distance to a VOR by cross bearing to a second station.
However, calculations of the wind triangle are also possible. The calculation procedure is described with the
aid of Fig.1.29/1 using the following example:

magnetic course 120° magnetic heading 131.7°
magnetic wind 190°/40 kt ground speed 167.5 kt
true airspeed 185 kt

1.29.2. Use of the computer for wind correction- and ground speed calculations

Solution:

1. Set mark "B" to magnetic course 120°.

2. Set wind arm to 190°.

3. Turn both disks and the wind arm together so that one of the red lines runs parallel to the connecting
line of points W (wind speed) and C (true airspeed). The hatched triangle WCM represents the wind
triangle.

At the mark "A" the magnetic heading of 132° can be read.

The ground speed is determined between the two black arrows (at points W and C) to 168 kt (180 - 12).

o s

MAGNETIC IN WIND
COURSE TO/FROM
MAIN VOR

TRACK LINE
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1.30. Calculation of the wind triangle using the computer IPC-1

1.30.1. General

IPC-1 computers are intended primarily for the calculation of flight manoeuvres, such as holding patterns, etc.
For the calculation of drift angle and ground speed, the components of the wind (vwc and vw) are determined
and then the drift angle and ground speed are calculated approximately.

1.30.2. Use of the computer for drift angle- and ground speed calculations

The following example explains the application:

true course 010° drift angle 6.8°
true wind 220°/30 kt ground speed in the drift triangle 126.8 kt
true airspeed 100 kt
Solution:

1. After setting the true course 010° and the wind direction 220° the wind components vwL = 26 kt and
vwc = 15 kt can be determined (see Fig.1.30/1). The ground speed is approximately:

Ve = Vias + vwL = 100 kt + 26 kt = 126 kt

TC =10°
ol | .
TRK T
< | "
1 \
> \
/- =
3 ; ‘--‘...‘ T,
Twe
E— 30—
B —f e
\
_ +— 11\
iy = 26 kt A7)
vy = 30 kt N i
wind dir. = 220°
vwe = 15 kt
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2. A simple approximation formula for a rectangular triangle can be derived:
57.29

a1
971°= 5759 |1

From this follows for small angles a:

D
d o dx§7.3 [1.30/1]

Nd f=—7F— ~ b=
o 573

Therefore, in the drift triangle applies: opa [°] = Vwe 573 & opa[] =15—/— =
Vas 100

One does not find always the solution so easily by mental arithmetic. The calculation is simpler in the logarithmic
scale on the other side of the calculator (see Fig. 1.30/2), in which the example used here was set. This

calculation leads to the result apa= 8.6°.

Vwc= 15 | Opa= 8.6
Vms=100 | 57.3

4
[ N
¢

Il’?]//]
3

Tvo dWl

Note:
A mark which facilitates the finding

of the coefficient 57.3 was not pro-
vided at this calculator. However, on
the logarithmic scales of other cal-
culators these are sometimes
attached (two examples see
Fig.1.30/3 and 4).

20 10
ALTITY,

£

P
20
§¢ ¥z g7 U

Sn/

mark 57.3

® g0
82 kil

Y
55 ¢
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1.31. Calculation of the wind triangle according to Schmidt

With the method specified by F. Schmidt, the WCA can be calculated approximately and without aids only
using mental arithmetic.

From the sine theorem (see equ. 1.1/1) one obtains:
Vw

sin ol = sin €

Vias
ao
or sin oo = —— and consequently:
57.3

Since sin 1° = 517—3 the following applies to small angles: sin 2° =

a’=~ 57.3 sin€ [1.31/1]

V1as

For simplification, the product 57.3 sin € is multiplied by 0.1 and grouped together to form the factor F. This
requires that vias in the denominator must also be multiplied by 0.1, so that the formula now takes this form:

F vw

owca® = ————
0.1 Vs 1.31/2]

Fig.1.31/1 shows the products 57.3 sin € and the selected factors F for the wind angles 0° - 90°.
Table 1.31/1 gives information about the occurring errors for this example: vras = 100 kt, vw = 40 kt.

factor F ——
o WCAT° WCAT° o
57.3 sin € — erl trueraEu]e =Fvy/ ([),]1 Vias error ']
0-10 0-4 40x1:10=4 0-4
€— 10 - 20 4-7.9 40x2:10 = 8 0.1-4
20 - 30 7.9-11.5 40x3:10=12 0.5-41
30 -40 11.5-14.9 40x4:10 =16 11-45
40 - 50 14.9-17.9 40x4:10 =16 11-1.9
50 - 60 17.9 - 20.2 40x5:10=20 0.2-241
60 -70 20.2 - 22 40x5:10 =20 0.2-2
70 - 80 22 - 23 40x6:10 = 24 1-2
80 -90 23-23.5 40x6:10=24 05-1

Fig.1.31/1 Table 1.31/1

. . 90 200 %
The computer WCA-2 (Fig.1.31/2) is used to v . "\
determine the factors F as a function of T “, ’j’a %
course and wind direction. It does not help . = Reshpdilg: "¢\ o
. . er Flugweg * 4’% /
to calculate the wind correction angle by 5 OF g \ o e
means of equ.1.31/1. Lokt %@@ +3.%
s i1 2
£ Owa @ wa(+) 3
- §.§ 5 - A
o - [+
o 5 Business & Aviation Pyblishing. 59379 Seim © 95 = &a @
2 Faktor x WS f\'g &
WCA = 220202 .
o | WA= "01Tas lﬁ’?“ ,9*\
L & 3
l’/ (‘01 WCA—Z & J y l,"v %
“, . 0 o o AN
l LT \"“
"‘lllmhn&ﬂ*“‘ >
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1.32. Calculation of the wind triangle according to Maleysson
1.32.1. General

With the computer Le De'iveur, invented by Charles Maleysson, the wind triangle is calculated using
approximation formulas.

1.32.2. Calculation of wind correction angle, ground speed and flight time

The calculation method is described with the aid of S 005°
Fig.1.32/1 and 2 in the following example (the French K vwe (X°) = 16.9 kt
designations are added in brackets): \

VwL (Ve) = 34.64 kt

vw (Fw) = 40 kt /
true wind direction & (vw) 340° ;‘ £ (a) = 25°
wind speed vw (Fw) 40 kt
true airspeed vias (Vp) 110 kt
true course TC (Rv) 005° vras (vp) = 110 kt \ Ve (Vs) - 74.4 kt
distance D 85 NM
wind angle € (a) 25°
wind cross component vwc (X°) 16.9 kt awca (x°) = 8.84°
wind longitudinal component vw (Ve) 34.6 kt
wind corr. angle awca (x°) 8.8°
ground speed va (Vs) 74.4 kt
flight time t (Te) 68.5 min
Fig.1.32/1

lution Fig.1.32/2):

1.The true course 005° is set on the
computer.

2. Along the line from the wind direction
340° to the center the sine = 0.42 is
found. The construction of the deter-

mination circle for the sine values is <
based on laws which are illustrated in N2 ) 4
Fig.1.32/3. é& ), &
3.Since |cos = |sin (o = 90) | is, one g
|cos a| = [sin (a + 90)| 55-%!\

finds along the line from the course 250°
(340° - 90°) to the center the cos € = 0.9
(the marker ® is used for finding the

T\
(T
N

courses € - 90° more easily).
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4. The wind correction angle awca (x°) is calculated
according to the following formula (see equ. 1.31/1):

Vw 60

0°= 57.3sin€
V1as

Vw sin €

V1as

In order to facilitate the calculation, the factor
Fb = 60/v1as is introduced and the formula takes
this form with the French designations:

Xx°= Fb Fw sina

All formulas required here are listed next to the table of

the factors Fb on the back of the calculator (see Fig.

90°

71,8°

&
P
[~}
/ / ’
&

Sinusa 7

%

1.32/4). For vias = 110 kt the factor Fb = 0.55 is found

here, so that the wind correction angle is obtained:

x°~ 0.55x40x0.42 = 9.2°

©
=
w
5. The ground speed is calculated approxima- x
tely according to the following formula: §<
i
VG = VTas £ Vw COS € °
>
With the abbreviations used here one gets:
vs=Vvp+ Fw cosa=110-40x0.9 =74 kt 3
'
x
. . L . Ko
6. The flight time t in minutes for the distance D i

in NM and vg in kt results to:
60

Va

0
=

t= D=FbD

On the back of the calculator this relation is
shown like this:

Temps estime’avec vent = distance (NM) x NFb

With the factor Fb = 0.8 (see Fig. 1.32/4) and
D = 85 NM one obtains:

Te =Fb D =0.8 x 85 =68 min
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a
17,4°

11,5°
5,7°

Fig.1.32/
VFbVFbVFbVFbVFb;g
30 2,00 80 0,75 100 0,60 120 0,50 140 o.43| !l
35 171 B2 073 102 059 122 049 145 04 -En
40 1,50 84 o071 104 058 124 048 150 0,40 :
45 133 86 070 106 057 126 048 155 039 @
50 1,20 88 068 10 ek 128&1603;332
55 109 90 .@0 0,46 165 0,36 :’;
60 1,00 92 o065 2 32 045 170 035 'U<
65 092 94 o084 114 053 134 045 175 034 t
7 96 o063 116 052 136 044 180 033 '<
75 o080 93 o061 118 051 138 043 185 0,32 .

s estimé avec vent =
distance (NM) x NFb



1.33. Calculation of the wind triangle using the GATCO 1 calculator

1.33.1. General oto®
‘ 040°

The GATCO-1 calculator is provided for the approximate /
determination of the wind correction angle and ground speed I el30°
for air speeds from 90 to 130 (kt, m.p.h., km/h). y -
w
VWL

1.33.2. Use of the computer for wind correction- vWe 4
and ground speed calculations /

The following example explains the application (see Fig.1.33/1): 220

true course 010°
true wind 220°/30 kt
true airspeed 95 kt

VT1as

VTASeff
wind correction angle awca 9.1°

VTASeff 93.8 kt

VL 25.0 kt Awca
ground speed vg 119.8 kt

010°

Solution (see Fig.1.33/2):

After setting the true course 010°,
the pointer is set to the wind
direction 220°. In the red DRIFT
CORRECTION scale (wind
correction to the left) the factor
0.3 is read, which has to be
multiplied by the wind speed to
find the wind correction angle:

awca = 30 kt x 0.3 deg/kt = 9°

In the light green GROUND
SPEED CORRECTION scale
(va > vias) the factor 0.75 is
read, which must be multiplied
by the wind speed to calculate
the speed increase and thus
the ground speed: 220°

&t

Ve =Vvms +vwx 0.75 =95kt + 30 kt x 0.75 =95 kt + 22.5 kt =117.5 kt
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Approximate solution for the wind correction angle:

According to equ. 1.31/1, the wind correction 57.3 .
angle for the assumed vmas = 95 kt applies: 95 Sin€ |0.15610.302|0.522|0.582
cos € 0.96| 0.87| 0,5 |0.26
o 57.3
~ Vw202 = K vy
awca[®] m Vw—or sin€ = kv £ 15° | 30° | 60° | 75°

57.3 .
The factors k = 95 sin € were entered in the computer (see Fig.1.33/2) in the circular ring DRIFT

CORRECTION. Table 1.33/1 shows four recalculated factors.

Approximate solution for the ground speed:
According to Fig.1.33/1 applies: VG = Vias = Vw COS €

In the computer, the values for the cos € can be read in the inner circle ring as a function of the wind angle.
The values in the upper pink ring are negative i.e. after multiplication with the wind speed one gets a nega-
tive correction value, so that the ground speed is lower than the airspeed. The correction values in the
lower ring highlighted in light green apply to tailwind and are positive (i.e. vg > v1as).

As Tab. 1.33/1 shows, the factors of the calculator are not exactly equal to the cos €. Since the vrasef is
always lower than the vras, too less is subtracted in headwinds and too much is added in tailwinds.To re-
duce these errors, the factors have been adjusted. In the set example (Fig.1.33/2) at € = 30° instead of 0.87
(= cos 30°) the value 0.75 is read, which is obviously too small. The correct coefficient would be 0.82:

va =95 kt + 30 kt x 0.82 = 119.6 kt

On the headwind side, the higher value 0.906 must therefore be entered instead of cos 30° = 0.87 at a
wind angle of 30°, which is actually the case. Table 1.33/2 summarizes the results of the example used
here when the specified span of 90 kt < vias < 130 kt is used. The results shown in red in the table were
obtained if the value 0.82 is used instead of the factor 0.75.

Viag ki 90 100 105 110 130
| GATCO 9
Qvea | exact 9.6 8.62 8.2 7.8 6.6
GATCO | 112.5(114.6)|122.5 (124.6) [127.5(129.6) |[132.5 (134.6) [152.5(154.6)
Ve [kt exact 1147 124.8 129.8 134.8 155.0
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1.34. Tabular calculation of the wind triangle using a mechanical computer
1.34.1.General

Tab.1.34.1. shows the section of a table with the help of which wind triangles can be calculated. How-
ever, the precondition for their application is the prior calculation of the wind angle, which is more
convenient with mechanical computers, which also often allow a simple reading of wind correction angle
and ground speed.

TasLE I.—GrouND-sPEED AND DriFr TaABLE

10-mile wind | 15-mile wind | 20-mile wind | 25-mile wind | 30-mile wind | 40-mile wind
Wind | | Wind
angle | Wind | "% wind | 7| wind (T [ wing Treck Wind | Tk mm!T""’“ angle
mw.mmmmmsmmmm.m
" lmp.h. * {m.ph. * {m.p.h. z m.p.h.x * | m.p.h, "m..p.ll.
Air Speed 180 Miles per Hour
15| 0°| 160 o0° | 155 ¢°
1664 = poaeo] 1 | A8 2
6] 2| 61| 3| 156 &
167 3 5°

T
a2 LY

1.34.2.Calculation of the wind triangle using the Schiffmann-Dodd Navigator

The following example explains the application:

true course 360°

wind direction 1 050°

wind direction 2 230°

wind speed 40 kt

true airspeed 100 kt

wind angle 50° LA i : )
wind corr. angle awca +17.8° \ ! ' :

ground speed 1 69.5 kt

ground speed 2 120.9 kt

Solution (see Fig.1.34/1):
After setting the course, the
wind angle of 50° can be read
opposite the wind direction.
The same angle is determined
opposite the wind direction
230° (not shown in the figure).
In the center of the computer
for the wind from 050° is in-
dicated >HEAD WIND right<
and for the wind from 230°
>TAILWIND left<.The upper
disk is then adjusted so that
these values can be read in
the window for TAS =100 kt
and the wind angle 50° below
the wind speed 40 kt (see Fig.
1.34/2):

wind correction angle 18°
change from TAS to GND -SPEED (tailwind) +21
change from TAS to GND -SPEED (headwind) - 31
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With these values one gets for the wind direction 050° a wind correction angle of +18° and a ground
speed of 69 kt (100 - 31) and for the wind direction 230° a wind correction angle of -18° and a ground
speed of 121 kt (100 + 21).

Note 1:

The ground speed calculation using the amount "change from true air speed to ground speed" (see note 1 in
Fig.1.34/2) is not done with the longitudinal component of the wind (which here is 25.7 kt), but with a signed
true airspeed correction. This avoids the need to calculate a vrasefr.

Note 2:

On this computer, the angle between course and wind direction is called the "relative wind angle”, but this

usually applies to the angle between heading and wind direction (see Fig.1.1/2). It can be an indication that
the ambiguity of the results must be taken into account, since the wind angles used here are never greater
than 90° (see note 2 in Fig.1.34/2).

note 2

note 1
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1.34.3.Calculation of the wind triangle using the Phelps Speedy Flight Computer

1.34.3.1. General

Fig.1.34/3 shows the computer invented by A. T. Phelps where the wind triangle is calculated using tables.
The wind angle is calculated using the compass rose at the bottom. To limit the size of the tables, the
wind angles are below 90°. In order to simplify the determination of the signs of the speed and the wind
correction, the four quadrants of the compass rose are marked with >HEAD WINDS L or R < and

>TAIL WINDS L or R<.

VN,

-4 FRELFDY SFEEUY FLiGH) LUMYPUIEK

WAC
Nautical

Jechonal
Nauvtcol

FUEL
CARRIED

DISTANCE

TTRe Wbis
ot
|&
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1.34.3.2. Use of the computer for wind correction and ground speed calculations

The following example explains the application:

true wind 280°/40 kt
true airspeed 100 kt
true course 050°

OWCA 17.8°
ground speed vg 120.9 kt

Calculation of the wind correction angle:

With the help of the compass rose a wind angle of € = 50° and at the same time the information >TAIL WIND
LEFT< is found (shown in Fig.1.34/3).

A table of the wind correction angle for different values of wind angle, wind speed and airspeed is very
voluminous and cannot be displayed on a handheld calculator in a well readable font size. To eliminate the

variable wind speed, instead of the wind correction angle the factor f was inserted into the table, which is
defined as follows:

awca [deg]
vw [ki]

Tab.1.34/2 gives a part of the table of the back of the computer in which one finds the factor f = 0.45 for the
airspeed 100 kt and the wind angle 50°. Therefore, the following applies:

owca =T vw =0.45 deg/kt x 40 kt = - 18°

The negative sign of the wind correction angle is taken from the information >TAIL WIND LEFT<. The true
heading is therefore 18° lesser than the true course.

This is of course an approximate solution. Tab.1.34/3 contains the exact (ext.) factors f and the factors contained
in the table (tab.) for two airspeeds and three wind angles.

7AS  [100] 120 140 160 180 200 —
10° [[10] 09 08 07 .06 .05 = Vras [ki]
wl| 20° |l20] 18 16 14 12 10 L=
o300 |[30] 25 22 19 17 15 2\ 100 200
<Z( * _g >§ < Aweca < Owca
glsoo 45| 38 33 29 26 .24 g ;g Vw 9 Vw
= * 5
=l g0c | 58 47 42 37 32 29 ext. | tab. ext.) tab.
90° | 60 49 43 38 34 30 20 | 8.81 .44 4.39 .21
WIND CORRECTION ANGLE 50°| 40 | 17.84|.45|.45 | 8.81|.22|.24
60 | 27.36 | .46 13.29 .22
20 | 10.83| .54 5.39 .27
70°| 40 | 22.10| .55 | .54 | 10.83].27 | .27
60 | 34.32 .57 16.37 |.27
20 | 11.53].58 5.74 .29
90°| 40 | 23.58 .59 |.60 | 11.54| .29 |.30
60 | 36.87 | .61 17.46 .29

Calculation of the ground speed:

On the front of the calculator there are beside the compass rose two tables for the ground speed (partly
shown in Tab.1.34/5). These contain the correction amounts Av = vias - vg, Which are a function of true air-
speed, wind angle and wind speed. These were calculated for an airspeed of 100 (kt, m.p.h., km/h), but

can also be used in good approximation for other speeds. Three examples are shown in Fig.1.34/4 and in
Tab.1.34/4.
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example 1 example 2 example 3
true airspeed vias v1=100 kt v2 =100 kt v3 =200 kt
true course 050° 050° 050° chosen
true wind direction 100° 180° 180°
wind speed vw us = 40 kt us = 40 kt us = 40 kt
wind angle € 50° 50° 50°
ground speed vg wi= 69.47 kt w2 = 120.86 kt w3z = 223.3 kt. |precise
wind corr. angle awca a1=17.8° or=17.8° as=8.81°
ground speed vg wi= 69 kt wo = 121 kt ws = 221 kt
wind corr. angle awca a1=18° a2 =18° a3z=9.6° Phelps
Tab.1.34/4
€ S
3|8 //D‘Q o
8' Ny (_é) Av = V1aS - Vg
) (U
o ot &Y o wind speed
o m S % S
|l 2|8 N 2 10 20 30 40 50 60
— a + %0 N Ny
£ 47 & = & S
N [e)) o} [e))
<~ -~ 1 ™ Yol
o N 10°| = * * : * :
o S b 3 S
o o)) o))
ol - /] + » Yo
x| = -~ + +
3 20°| * * * * * *
o )
~N OL1= 1 8 N~
: ? & o
o X 30°| X * * * N
= @) o0 8 N~
= = + + 3
@ /i +
& v 40°| * * * * * *
] — 8
L Ol,= 178° ~- ™ i
- 50°| * * — * a
x
S ? ¥ +
(9V]
>'o’o 60°| * * * * * *
< — o)
1 C}l (YI)
70° * * *
™ X -
+ gg s
80°| =% * * * * *
5= 8.81° § « o
. ® &
90°| w * * « * o
Fig.1.34/4 - @ QN
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1.34.4.Calculation of the wind triangle using the ,,QuDieM*“-Navigator

1.34.4.1. General

The "QuDieM-Navigator" (see Fig.1.34/5) is intended for aircraft flying at an airspeed of approx. 100 kt and is used
to calculate course, heading and flight time using a 1:500,000 scale map.

1.34.4.2. Use of the computer for wind correction- and ground speed calculations

The application is explained using the following example (see Fig.1.34/5):

true airspeed 100 kt magnetic course 050°
true course 060° wind corr. angle + 3.9°
variation 10°E flight time 17.7 min
true wind 220°/20 kt

Step1:

The device is placed on the map in such a way that the center aperture is above the departure point, the
aperture of the bearing arm is above the destination point, and the north-south axis is parallel to a meridian.
Step 2:

The arrow TO TARGET shows the true course 60° on the outer compass rose and the magnetic course 50° on
the inner yellow one. For this it is necessary that the variation 10° E has been set on the back of the device.

Step 3:
In the window of the bearing arm one can read the distance (35 NM) and the still-air time (21 min).

Step 4:
The wind arrow is set to the true wind direction (outer wind rose) 220°.

Step 5:
The wind speed of 20 kt is set.

Step 6:

In the wind correction window, the figure 4 appears on the left and a white triangle (+) below it, as well as the
figure 18 on the right and a black triangle (-) below it. Thus the wind correction angle is determined to +4° and
the true heading to 64°. The flight time is 18% less than the still-air time, which means:

21min - (21 min x 0.18) = 17.2 min.

Nt
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Fig.1.34/6 shows the table of correction figures, which is located inside the calculator, so that after setting the
course, the wind direction and the wind speed the wind angle € is set and the applicable wind correction
window opens. Tab.1.34/6 lists the results for three other examples to illustrate accuracy.

Example

true course = 360° vias = 100 kt distance = 50 NM still-air time = 30 min
true wind 225°/40 kt awca +16.4° Indication of wind corr. window: +16 +25
11 windangleer 45° VG 67.6 kt owca  +16°
time  44.4 min time: t=30+(30x0.25) = 37.5 min
true wind 250°/25 kt awca -13.6° Indication of wind corr. window: -13 -7
2 wind ang|e e 70° \'/¢] 105.8 kt OWCA -13°
time  28.4 min time: t=30-(30x0.07)=27.9 min
3 | true wind 340°/15 kt awca -2.9° Indication of wind corr. window: -3 +12
wind angle g3 20° VG 85.8 kt oawca  -3°
time  35.0 min time: t=30+(30x0.12) = 33.6 min
presumed accurate results results of the QuDieM - Navigator

Values above a black triangle
have a negative sign, values
above a white triangle a
positive sign.

Tab.1.34/6

With tail wind or head wind, i.e. with wind angles € < 10°, only the
sign of the time correction can be clearly defined. The sign of the
wind correction angle can be recognized by the direction of the
wind arrow in relation to the course. This is described in the manual:
»If the wind is within 10° of track, the application of heading com-
pensation is determined by the direction from which the Compen-
sation Reference Mark was centred. The heading compensation
would be added if centred clockwise and subtracted if counter-

clockwise”.
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1.35. Calculation of the wind triangle using mechanical replicas

1.35.1. STEPHAN NAVIMAT 501

The application is explained using the following example (see Fig.1.35/1):

true course 040°

true airspeed 130 kt
true wind 260°/50 kt
wind correction angle -14.3°
ground speed 164.3 kt

3. At the crossing point
determine WCA 15°.

1.Set the wind arm to 260°.

2.Set the diagram slide

on course 40°and adjust it
until the TAS circle 130 kt
the wind mark 50 kt crosses.

4. Read at the center of
the compass rose the
ground speed 165 kt.
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1.35.2. The ,Simplified Flight Calculator® according to Nelson

The application is explained using the following example (see Fig.1.35/2):

true course 090°

true airspeed 120 m.p.h.
true wind 145°/30 m.p.h.
wind correction angle +11.8°

ground speed 100.3 m.p.h.
true heading 101.8°

1. Set true course 90° at the

compass rose. \ L\;[L

o 2. Adjust wind
@ arm at 145°.

6. Read true heading 102°
under deviation +12°. The
same scale can be used
to set the variation and
thus to determine the
magnetic heading.

0

3. Set the mark 120 m.p.h.
on the speed arm over
the mark 30 m.p.h. on the
wind arm.

80 70 60 5
RERRERER

00 90

D FLIGHT CALCULATOR

5. Ground speed —

100 m.p.h. read here.

4. WCA +12° read here.

Note:

The handling of the calculator for wind determinations from drift and ground speed is analogous to the
methodology described in the subsequent paragraph, which is why a more detailed explanation is not
necessary.
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1.35.3. Air line flight calculator according to Hokanson

The application of the calculator invented by E. C. Hokanson is explained using the following example

(see Fig.1.35/3):

true course
true airspeed
true wind
variation

wind correction angle
ground speed

true heading
magnetic heading

1. Set true course 120°

120°

185 m.p.h.

190°/40 m.p.h.

11°E

+11.7°

167.5 m.p.h.

131.7°
120.7°

at the compass rose.

2. Specify the wind point
at 40 m.p.h. and 190°
(in the drawing marked
by a red point).

5. In this scale at the arrow

the equivalent - wind _

TAS - GS = 18 m.p.h.
(headwind) is displayed

Note:

The handling of the calculator for
wind determinations from drift and
ground speed is analogous to the
methodology described in the sub-
sequent paragraph, which is why a
more detailed explanation is not
necessary.

GROUND AIR SPEED [M. P, H.
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7. Opposite the variation 11°
the magn. course (MC) of
109¢ is indicated. The
heading is MC + WCA =
109°+12° = 121°,

3. Adjust the TAS armin a
way that 185 m.p.h. is
above the wind point.

4. In this scale read at the arrow
the ground speed (167 m.p.h.).

\ 6. In this scale on the arrow
read the WCA (12°).




1.35.4. Calculation of the wind triangle according to Pilehn

The application of the Pilehn-Calculator is explained using the following example (see Fig.1.35/4):

true heading 090°

true airspeed 90 kt

true wind 045°/40 kt

drift angle +24.6°

around speed 67.9 kt

QO
&
Ny 5
o
p=110.4° o‘;‘o
o = 45° [2/
a Vras = 90 kt e 090° true heading

A- o=
) /
11460
Vao = - tru
Qoa=246° ©67.9%k \ © track
B

vy = 40 kt

In Fig.1.35/4 the drift triangle ABC is supplemented by the congruent triangle ACD. In this triangle the angle
A-C-D corresponds to the drift angle and the line CD to the ground speed. In Fig.1.35/5 the calculator which
simulates the triangle ACD is shown in the setting of the example chosen here.

B=110°

fix wind direction 045°
adjust and fix wind

speed 40 kt using
the airspeed scale

read ground

£ y % speed 68 kt here

""Ill“' ”l"-m TR
1
50 0 120

/ adjust airspeed

a =45° ruler at heading 90° true air-

speed 90 kt

The ground speed can be read directly from the speed arm. However, the drift angle can only be calculated
using the angles o and B and results in 0lpa = 180° - a - B = 180° - 45° - 110° = 25°,
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1.35.5. Calculation of the wind triangle with computers of typical Japanese design
1.35.5.1. Calculation of wind correction angle and ground speed

The triangular calculator illustrated in Fig.1.35/6 is in design and use similar to the constructions described
under 1.6. and 1.9. Like these, it is suitable for calculating the wind correction and drift triangle as well as for
determining the wind from drift and ground speed or from two drift values. A different method is used here to
display or set the drift or wind correction angle. Under the transparent and pencil writeable disk 1 is field 2 of
parallel green and red lines with the corresponding scale 3. On the speed arm 4 the mark 5 is positioned and
one can see that at the shown position an angle of about 9° is displayed (see red dashed line). This display
remains even if a different speed is set on the scale 7 by means of screw 6. The wind arm 8 is used for
setting and reading wind speed and wind direction.
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1.35.5.2. Use of the computer for wind determination from drift angle and ground speed

1. Set the course at the compass rose.

2. Set ground speed on scale 7.

3. Adjust the speed arm 4 in such a way that the
mark 5 is on the line of the drift angle.

4. Set the wind arm 8 to the value of true airspeed on
the speed arm 4 and thus find the wind point W.

1.35.5.3. Use of the computer for wind determination from two drift angles

. Set true airspeed on scale 7.

. Set HDG 1 on the compass rose.

. Adjust the speed arm 4 so that mark 5 is at the line

of the first drift angle (DA 1).

4. Draw a pencil line along the speed arm 4 on the
surface of the compass rose.

5. Set HDG 2 on the compass rose.

6. Adjust the speed arm 4 so that the mark 5
is at the line of the second drift angle (DA 2).

7. Draw a pencil line along the speed arm on the
surface of the compass rose.

8. The wind point W is located at the intersection of

the two lines plotted. After the wind arm 8 has been

attached to this point, the wind direction and wind

speed can be read from it.

wWwn =

1.35.5.4. Use of the computer for wind determination from two ground speeds and tracks

1.Set ground speed 1 on scale 7.

2.Set track 1 at the compass rose.

3.With the help of the speed arm, make a circular arc
of the radius true airspeed with pencil on the
surface of the compass rose.

4.Set track 2 at the compass rose.

5.Set ground speed 2 on scale 7.

6.The wind point is found at the intersection of the
airspeed mark 5 of the speed arm 4 with the
drawn arc.

7. After the wind arm 8 has been attached to this
point, the wind direction and wind speed can be
read from it.
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1.36. Computers specially designed for wind determination

1.36.1. Calculator DR 3 for wind determination from two drift angles

This type of calculator DR 3 is intended for calculation of wind from two drift angles found on two
headings differing by 60°. The example described under 1.7.3. is also shown in Fig.1.36/1. After setting
the compass rose to HEADING 1 = 360° (1), the two track lines are selected. The first (black) drift line +12°
(3) crosses with the second (red) drift line +17° (2) at wind point W. The figure shows the corresponding
wind triangles (5 and 6) for illustration purposes. The wind vector is the connecting line from the center to
the wind point. After the centerline of the wind arm has been placed above the wind point, the wind
direction 330° (4) can be read. The wind point lies approximately on the speed circle 31%, so that a wind
speed of 31 kt results (vras x 0.31 = 100 kt x 0.31 = 31 ki).

/]
oy v
‘ I!/I/IIIIII/I &
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1.36.2. Wind determination using the Four-Point-Bearing-Method with a Computer
according to Burt and Wright

1.36.2.1. Description of the method 30s

TH = 270°

The red line in Fig.1.36/3 represents the
track which occurs when an aircraft per-
forms the flight figure according to
Fig.1.36/2 under the influence of a north-
easterly wind. The stopwatch is set in
motion at the departure point P, and the

times t1, t2 and t3 are recorded when the Fig.1.36/2
positions P+, P2 and Ps are reached.

In the figure, the distance S (P, « P1) represents the wind track u x t (wind speed u multiplied by time t), the
components of which were drawn red for position 2 and green for position 3. Point P+ is reached when the
described flight figure is completed (see note 1). The points P2 and P3 are defined by the bearings of 90° and
135° respectively. The triangle A P+ P2 is similar to the drift triangle, its sides are the distances driven in the time
t2 - t1. The distance A « P2 is the air distance v (t2 - t1), A » P1 is the wind way u (2 - t1) and P1 » P2 is the
distance flown over ground. This applies analogously to the triangle P1 B P3 and the time ts - t1.

60s  angular velocity w = 3°/s; TAS = 120 kt

TH = 090°
30s

The following applies to the position 2:
Sz cosy =V (t2 - t1) and with S =u toone gets: | ucos Y=V ( -t—1 ) [1.36/1]

The following applies to the position 3:

. t
Sssiny + Sz cos y = V (ts - t1) and with Ss = uts one gets: u(sin y+cos ¥) = v(1 - t )| [1.36/2]

T
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Example:

true heading 090° wind speed u 30.3 kt
true airspeed v 120 kt angle y 60.1°
4 180 s true wind direction 030.0°
to 206 s
t3 275s

Solution:

15.15
120 (180, _

In equ. 1.36/1 air speed and times entered one obtains: u = cos y =

" 206 cos y

In equ. 1.36/2 air speed and times entered one obtains: u= — 120 (1- 180 _ - 41.45
siny + cosy 275 siny + cosy
i 41.45
After equation results: SNy+CoSy _ =tany+1=2.63— y=60.05°
cosy 15.15
. . . 15.15
According to equ. 1.36/1, this results for the wind speed: u= oS 60 = 30.3 kt

The formulas for wind speed u and wind angle y are not too complicated, but their calculation without today's
electronic calculator is quite time-consuming. To simplify these calculations, F.S. Burt and C.S. Wright invented
a special calculator, which is described here.

1.36.2.2. Computer for the ,,Four point bearing procedure“ according to Burt and Wright

The formulas 1.36/1 and 2 can be simplified if the airspeed v = 100 is used. One will get the false wind speed
u’, but it is easy to correct with this relation:

—uY
“="500
The formulas now get this shape:
. t1 s t
u'cosy=100(1- ——) [1.36/3] U (siny +cosy) =100 (1 -——) [1.36/4]
2 3
A B

One side of the calculator has the logarithmic scales 1 and 2, which are used for multiplication by the factor
v/100, and the special scale 3, for the calculation of the variables A and B. For the example used here one
gets (see Fig. 1.36/4):

A =100 (1 180 12.6 B =100 (1 180 34.5
- ('206)‘ ' - ('275)‘ '
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Scale 3 was constructed in the following way:

The general expression for value A is: A=100(1 - % )

In order to define the position A = 10 on scale 3, any value is used for a (here a = 100) and this result is obtained:

100

10=100(1- 52 ) —b=111

In the same way, b = 222 is obtained if a = 200 is assumed. l.e. the position A = 10 in the scale 3 is opposite the
value 111 in the logarithmic scale 2 (see Fig.1.36/5).

After the values A and B are known, the wind direction
and the wind speed u’ can be determined on the other
side of the calculator (see Fig.1.36/7). Fig.1.36/6 is the A u
schematic sketch of a part of the computer. The point v
M corresponds to the mid-point and the vector u” to
the wind arm. The line M « P is one of the red lines of B
the determination field on the PORT side (the desig-
nations PORT and STBD are indications of the position
of point Po when overflying point P+). The 45° angle of
the red lines were selected to be able to insert value B 45°
(for definition of values A and B see equ.1.36/3 - 4).

<

P Fig.1.36/6
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lution Fig.1.36/7):

1.The true heading mark TH is set to 090°.

2.The pointer is placed at the intersection of the lines A = 12.6 (black dashed line) and B = 34.5 (red
dashed line).

3.0n the inner rose the angle y = 60° and on the outer rose the true wind direction 030° is displayed.

4.The pointer scale shows u’= 25 kt. The wind speed can be calculated at the logarithmic scales 1 and 2
on the back (see Fig.1.36/4). For u” = 25 kt and v = 120 kt one gets u = 30 kt:

v 100 | v 100 | 120

80 90x 109
WL g1y

Note 1:

Since deviations of course, bank angle, speed and departure time affect the result, an artificial cloud can be
generated at departure from point P, and the time t; can be determined when meeting the cloud after a more
or less random 360°- curve, provided that course and speed are constant afterwards.

Note 2:

The accuracy of the wind determination depends, among other things, on the exact bearings (090° and 135°).
However, these are only possible with radio means (i.e. NDB, VOR or DF) with sufficient accuracy. If, how-
ever, such a possibility is used, the 135° bearing is not necessary, because already at position P1 the angle y
can be measured and with equ.1.36/1 the wind speed can be calculated.
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2. General navigational problems and mechanical computers

2.1. Calculation of courses and bearings

These equations can be derivated from Fig.1.1/1-3 and Fig.2.1/1:

heading (CH)

heading (MH)
compass <course (CC) + deviation = magnetic<course (MC)
track (CT) track (MT)
heading (MH) heading (TH)
magnetic<course (MC) + variation = true < course (TC)
track (MT) track (TT)
heading (TH) heading (MH)
true <course (TC) - variation = magnetic<course (MC)
track (TT) track (MT)
heading (MH) heading (CH)
magnetic<course (MC) - deviation = compass <course (CC)
track (MT) track (CT)
true true
magnetic— course + wind correction angle (WCA) = magnetic — heading
compass compass
true true
magnetic— heading + drift angle (DA) = magnetic — track
compass compass
true true
magnetic— heading + relative bearing (RB) = magnetic bearing to (MBto)
compass compass

magn. bearing to (QDM or MBto)

magn. bearing from (QDR or MBtrom)

> + variation = <

true bearing to (QUJ or TBio)

true bearing from (QTE or TBrom)

magn. bearing to (QDM or MBo) \ + 180 < magn. bearing from (QDR or MBirom)
true bearing to (QUJ or TBio) / + 180 true bearing from (QTE or TBfrom)
true
A
Nmagn. —)variation (W)

radio station

line of position (LOP)

-/

magn. bearing from (QDR)

true bearing from (QTE)
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Different calculators make the conversion of courses and bearings easier by inserting formulas or
calculation schemes. Here are some examples:

e o e 10
2® 5 20; R~
06‘ . 150'}: - V 0\
S s . o

* p *H

MH = THE VAR
H s TH VR Fig.2.1/3

Fig.2.1/4 illustrates the following calculations:

TH = 027°, VAR = 15°W = MH = 042°
MH = 027°, MT = 042° = DA = + 015°

TC = 027°, WCA = +15° = TH = 042°

MH = 027°, RB = 040° = MBi, (QDM) = 067°, MBiom (QDR) = 247°

B UE INDE VAR, WCA, DA

TH, MH, TC

RB, MBio

M Bfrom
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2.2.Conversion of units of measurement

Table 2.2/1 contains the conversion factors for units of measurement that are often required in aviation. The
usual solutions are illustrated by examples.

1 nautical mile (NM) = 1.852km| 1 kt= 1.852 km/h 1 stat.mile = 1.609344 km
1km =0.54 NM 1 km/h =0.54 kt 1 km = 0.621371 stat.miles
1 ft per minute = 0.00508 m/ s 1ft =0.3048 m 1m/s=3.6km/h
1 m/s = 196.8504 ft/ min 1 m = 3.28084 ft 1km/h=0.277m/s

1 US gallon = 3.785412 Liter |1 Imperial Gallon = 4.54609 Ltr.| 1 pound (Ib) = 0.453592 kg

1 Liter = 0.264172 US Gallons 1 Liter = 0.219969 Imp.Gal. 1 kg =2.204622 Ib
1m.p.h. = 1.609344 km/ h 1yard =0.9144 m 1inch = 25.4 mm
1 km/ h =0.621371 m.p.h. 1 m = 1.093613 yards 1 mm = 0.039370 inch
|
tec = (t- - 32) x 0.55 top = (ke x1.8) +32 | tc =Tk -273.15 | Tk=tc+273.15 Tab.2.2/1

Example 1 (see Fig.2.2/1)

The conversion factors 3.6 (m/s 2 km/h) and
1.852 (NM =2 km) represent a distance on the
logarithmic inner scale which was graphically

entered as an arc. In the example shown here,
the following readings are possible:

200 km = 108 Sm (sea mile)

200 km/h = 108 kt = 55.6 m/s

Example 2 (see Fig.2.2/2)
The following results are achieved with the setting
shown here:

50 km(km/h) = 27 NM(kt) = 31.07 STAT.MILES (m.p.h.)
50 m = 54.68 yards = 164.04 feet

50 Liter = 10.998 Imp.Gal. = 13.21 US Gallons

33.4 m/s = 6575 ft/min

Example 3 (see Fig.2.2/3)

With the help of the logarithmic scales of the calculators of the NL series, multiplications with all factors are
possible. Factor 3.6 (red circle) was highlighted for conversions from m/s to km/h and vice versa (example:
51 km/ h = 14.16 m/s). For conversions from meters or kilometers to feet or miles, markings are provided at
1-6-1 (mile), 1-8-5 (n mile) and 3-0-4 (Feet).

mile n mile -~ Feet
30 0 50 60 70 80 90100 150 150 | | 200 300
90fi00 2 L LA
30 40 50 70 80 150 200 300
T T Fig.2.2/
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Example 4 (see Fig.2.2/4)

In this original solution, all conversions based on multiplication by a factor are made on the logarithmic
outer scales. The correct factor is set by means of several small holes in the upper disc and a single
hole in the lower disc. The two holes must be aligned before reading. To enable this, the manufacturer
recommends inserting a sharp object into the hole next to the desired conversion and turning the upper
disc until it sits in the only hole of the lower disc (set example: 60 Ib = 27.21 kg). In this way, the
following conversions are possible quickly and easily:

KNOTS = FT. PER SEC. OIL-QT = LB FT=2M
LB. = KG GAS GAL == LB KM = STAT.
STAT. =2 NAUT. JP-4 FUEL GAL. = LB. U.S.GAL. =2 IMP.GAL.;

The conversion NM 2 stat.Mile can also be done at the two arrows "NAUT" and "STAT".

hole

VERSIONS)—
® (CON
coN

-
hole W99

Exampl Fig.2.2

The conversion degrees Fahrenheit 2 degrees Celsius allow many calculators over additional scales of
this type:

Fig.2.2/5
S50 a0 - %9 Qb odl 0 10 20 30 40 50
| + !

OF .50 -40 -30 -20 10 O 10 20 30 40 50 60 70 80 90 100 10 120
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2.3. Time - speed - distance problems
2.3.1. Triangle calculator with log sin scale

On computers, which calculate the wind triangle with the aid of the sine theorem (see Fig.2.3/1), the
determination of the flight time can be done thereafter on the same scales (see Fig.2.3./2).

windspeed TAS groundspeed distance groun|dspeed
| |
[ | A
WCA . .
€ time [min] 60 [min]

sin

WCA

2.3.2. Triangle calculators with diagram slide

On computers with diagram slides, the second setting is made on the logarithmic scales on the back, which
is inconvenient and can lead to errors. A. Heitor therefore proposed an additional device for these com-
puters. Fig. 2.3/3 shows the figure from the patent specification.

The tongue (1) of an additional logarithmic slide rule is moved over the pin (2) and the groove ( 3) of the dia-
gram slide in such a way that the groundspeed (after the calculation of the wind triangle in the center of the
wind rose) is opposite the mark "1 hour". In this way, the flight time can be read immediately below the
distance, so that no turning of the computer is necessary. The same effect could be achieved by simpler
means if the diagram slide gets an additional line network (shown red in Fig.2.3/4). After the wind triangle
calculation the ground speed (here 150 kt)
is below the center of the compass rose. Y _ _ .
At the top or bottom of the computer, the RS Rl et =
flight time can now be read from the red st e B R 10
lines opposite the distance. For a distance 3w N m'ﬁﬁ
of 50 NM, for example, both scales show o) ! e'o o 4|o 5 g

20 minutes. If the distance (e.g. 80 km) is \TRUE | M08 0

set over the time (e.g. 32 min.), the ground Ea “|'|””“f|”” 20
speed (150 km/h) can be read in the i i
centre.

0 2 30 /4 50 60 70 80 90

Liiabiriabiaiil )
AR AT
. X N




2.3.3. Time-speed-distance computer according to Keator

Fig. 2.3/5 shows the Time-Speed-Distance-Calculator of FW. Keator which simulates the straight line
by means of a thread from the coordinate origin. In the line grid the quotients speed = distance / time
or time = distance / speed can be read. The figure shows this example (red lines):

Speed: 110 kt , distance: 140 NM, time: 1 hour 16 minutes.

SPEED
SPEED - TIME - DISTANCE COMPUTER S L, ¥ ) 6 - 8
20 o
10
C \0
|
50 Z\\
16 min A2
40 Z \%\
30 Z
Z Qé‘ 110 kt
0
Ll
= =
= 10 =
I =20
1h /50 2
30
20
10 i

1 2 3 4 5 6 7 8 9 10 1 1213 1415 16 17 18 19 20
DISTANCE / EW.KEATOR. N, 6-7-32

140 NM Fig.2.3/5

2.3.4. Time-speed-distance-Computer according to Phelps

FRELFDY SFEEUY  rLIGH) LOMP
Fig.2.3/6 represents the upper part of the Py iy b3

Phelps Speedy Flight Computer, which is : ::f;.m; 2 ’,:;"U‘::‘;:
provided for time-speed-distance calcu- 7 % / ‘

lations. This quotient is shown in the
figure

: T FUEL FUEL
PER HOUR @ % CARRIED
t= S - IINM_ 4 49 h=71.5min § ___ SPEED DISTANCE

v 110kt

WA

The same setting allows the calculation
of the flight time from the hourly con-
sumption (11 I/h) and the fuel quantity
(131 1).

In addition to the middle pointer, there
are two other marks on the speed win-
dow, the upper one is labeled with STAT
(stands for stat.mile) and the lower one
with KTS (see note).




Fig.2.3/7 illustrates the basic design of the machine. All scales are logarithmic, so that the product relation
distance = speed x time is reduced to additions (substractions), which can be realized by a simple gear
mechanism. The gear wheels 1 - 4 have the same number of teeth. The gear wheels 1 and 2 with the
distance protrude beyond the housing in order to be able to set speed and distance values. The gear
wheels 3 and 4 are stacked on one axle. Wheel 3 with the time scale is in constant engagement with wheel
1. Wheel 4 (shown in red) with the window and the reading mark for the time, is constantly in engagement
with wheel 2. Three examples are used to explain how it works.

ear wheel 1

gear wheel 2

___ gear wheel4

~— gear wheel 3

The 1st example is shown in Fig.2.3/7: speed: 100 kt; distance: 100 NM; time: 60 min.

For the 2nd example these values were assumed: speed: 80 kt; distance: 100 NM; time: 75 min. In order
to adjust the speed 80 at wheel 1, it must be turned by the angle a to the left. Wheel 3 rotates to the right
by the same angle and 75 minutes of flight time are displayed (100:80 = 1.25 hours = 75 minutes). For the
3rd example these values were assumed: speed: 80 kt; distance: 80 NM; time: 60 min. For this, wheel 1
must be turned to the left by the angle a. Wheel 3 rotates to the right by the same angle so that the
number 75 is at the top. Since wheel 2 must be set to 80 NM, wheel 4 moves with the time window by the
angle a to the right, so that the time mark is opposite the number 60.

Note:

The three markers on the speed window are
advantageous if one wants to use land and
nautical miles simultaneously. The amounts
of the speeds of both dimensions differ by a
factor of 1.15 (kt x 1.15 = m.p.h.). The mul-
tiplication occurs at the logarithmic speed
scale (see Fig.2.3/8) by the distance bet-
ween the speed marks, which corresponds
to the amount 1-1-5 on the logarithmic
scale. Thus it is possible to set the speed in
m.p.h. at the STAT mark, while nautical
miles are used at the distance scale.
Conversely, the speed can be set in knots
at the KTS marker and stat. miles can be
used in the distance scale.
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2.3.5. Time-speed-distance computer according to Brazel

The calculator Naviquick (see Fig.2.3/9), invented by J. Brazel, has the shape of a circle and is suitable for
working with the map as well as for calculating distance, time and speed. In the distance field 3, the yellow
point P indicates the distance S in NM, which was picked up in a map of the scale 1:500,000. The time scale
4 shows the flight time for this distance in minutes when flying with the ground speed set with the screw 2 in
the speed scale 1. Fig.2.3/10 schematically shows the kinematics inside the device. When adjusting the
ground speed using nut 2, the lever 6 and the speed mark 7 move on spindle 8, which is rotatably mounted
in the movable circular leg 5. The pin 9 is attached to the lever 6 and slides in the groove 10 when the circle
is opened. The leg 5 is also connected via the pin 11 to the rack 12, which slides on the rail 13 and thus
rotates the gear wheel 14 and the minute pointer attached to it. When setting a higher ground speed, lever 6
and pin 9 move downwards. This changes the transmission ratio between leg 5 and rack 12, so that shorter
times can be read off the scale at higher speeds. If the circle is closed as shown in Fig.2.3/10, i.e. the
distance S is zero, the speed adjustment has no effect on the time display because the groove 10 is parallel
to spindle 8. The yellow point P is attached to the leg 5 for the display of the distance S. This point moves

along the lines in the distance field 3 when different distances S are set. Schematically is shown the position
of leg 5 at high speeds in red and at at low speeds in green.

=
wn
O
o
=}
=}
S
S
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2.3.6. Point of equal times (P.E.T.)

At the point of equal times (P.E.T.) the times for the continuation of the flight to the destination and for
the return to the starting point are the same. In Fig.2.3/11 the distances and times are described.

VaGin VGout
P 4

\
b t —
e — dPET’ tPET _— D - dPET —_——————
start Ré.T. destination
- T,D - Fig.2.3/11
VGin ground speed in
VGout ground speed out
dpet distance start - PE.T.
treT time start - PE.T.
D distance start - destination
T time start - destination *)
{2 dper _ D-dper Veout _ D Ao = __D vain
= Ven v — = -l — Opgr= o — dpgr=—""""——
Gin Gout Vgin  dpgt _Gout | 4 VGout+ Vgin
VGin
dpgr = D Vain | D= T Veout tpeT VGout = T VGout Vain o = T Vain
VGout + VGin dPET = tPET VGout VGout + VGin PET VGout +VGin
Example:
D = 1000 km; | vgout = 500 km/h; | vgin = 800 km/h; | T = VZ - = 1000/500 =2 h =120 min
ou

1000 km x 800‘%

dper =
1300 l%

=615 km

120 min. x 800 KM
h =74 min

treT = K
1300 Tm

The formulas for deer and teet require these settings in logarithmic scales (see Fig.2.3/12):

treT | VGin

T

| VGout + VGin

&\° 12 %0
» 73

dpet |

D

VGin

| VGout + VGin

74

*) The time T results from the available fuel, which in practice is always reduced by a reserve quantity.
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2.3.7. Point of no return (P.N.R.) or radius of action

Depending on the total fuel quantity, one can just return from the point of no return (P.N.R.) to the starting
point. If the fuel supply is reduced by a certain reserve, this point is shifted towards the starting point and
is then called the point of safe return. The distance to the point of no return is also called the radius of

action. The distances and times are defined in Fig.2.3/13.

>VGout Vain<—
- b d‘
Ve
VGin ground speed on inbound flight i
VGout ground speed on outbound flight PNR :

denr (R) distance start - PN.R.
(radius of action) start P.N.R.
tPNR time start - PN.R. d
tin time PN.R. - start -~ den R) ———
T tn+1
n IR Fig.2.3/13
_ . T-tenR _ T _ VGout +1 _ T vain
tenr VGout = (T - tpNR) Vain — e T Vor — | tPnR = Vet v [2.3/3]
For the radius of action R = denr = Veout x tenr this formula results: _ T vain Veou [2.3/4]
VGout + VGin
Example:
VGout = 500 km/h Vain = 800 km/h T=4h

4hx800'%
tnm = D _546h=148 min

km
1300 h

R =tpNR VGout = 2.46 x 500 km = 1230 km

The formulas for R and tengr require these settings in logarithmic scales (see Fig.2.3/14):

Vain

20 48
A% 2

&

—

Vain + VGout

VGout R
7

P
N

tPNR

Fig.2.3/15 shows how the formulas for PN.R. and P.E.T. are displayed on the MERCATOR computer.

JP.E.T.

/" T.END.

GSo + GSg _ T.FLPLAN
o=, &

N T.0UT

T.0UT
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Calculation method for calculators with sine scales (example see Fig.2.3/16)

45°
45°

P.N.R.

VGin=139 kt

Flight times and ground speeds are inversely proportional:

VGout

VGin

tin

tout

In the two wind triangles the following applies according to the sine theorem:

sin(e” - awca) sin(e” + awca)

VGout = VW —(———— VGin = VW -
SN awcA SIN awca

For the total flight time T apply: T = tin + tout= tout + X tout = tout (1 + X)

The following applies to the radius of action: R = tout VGout

tin sin(e” - awca)

tout sin(e” +

R VGout
T ~ 1+x

The following settings are required for this example on a computer with a sine scale:

1. Calculation of awca (10°) and vaout (97 kt):

2. Calculation of the factor x (0.7):

3. Calculation of the radius of action R1 =57 NM
(for T=1h)and R2 = 143 NM (for T = 2.5 h):

Note:
In order to calculate the largest possible radius of action, the
flight time T must be calculated as follows using the range
diagram schematically shown in Fig.2.3/17:
1.Determination of the relative range at the curve maximum.
2.Determination of the corresponding true air speed (Vmax.range)-
3.Determination of the hourly fuel consumption by division
Vmax.range : felative range
4. The maximum possible flight time T is obtained from the fuel
quantity (reduced by the necessary reserve) divided by the
hourly consumption.
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Graphical ground speed determination for the calculation of the radius of action according to Mary Tornich:

100°

2800 A

Example:

true course 280°/100°
true airspeed 60 kt

true wind 150°/30 kt

ground speed Vgout 74.71 kt

vain  36.14 kt Fig.2.3/18

A drawing according to Fig.2.3/18 is used to graphically determine the ground speeds veout and vain.
From point M on the route A" B” (280°/100°), the wind vector is drawn in the direction of 150°

(80 length units). Then a parallel to the route is drawn through the endpoint C of the wind vector
(dashed line). Two arcs around the point M of radius 60 units of length (v1as) intersect the dashed line
at points A and B. The actual wind triangles (M A" A for the outbound flight and M B B’ for the return
flight) are hatched in red. The ground speeds of the outbound and return flights are determined to
Veout = 75 and vain = 36 length units. This solution is also possible on certain computer types (see
Fig.2.3/19). After setting the compass rose to course 280°/100° the wind point C is marked on the
30 knots circle in direction 150° and then on the dashed line through the wind point between points A
(on the 60 kt circle) and point C the vaout = 75 kt is counted. In the same way the ground speed

vain = 36 kt is found between the points C and B.

I1f]

2 Jo
Wi
3

280

T TTTy

011 0
W’“.f.fiumr Mo i\m\\\}“\

e

/111,992 o1 w
4 u|lm11HA““‘

i Fig.2.3/19
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2.3.8. Meeting point calculation

2.3.8.1. General

The rendezvous calculations discussed here are applicable for aircraft flying on the same course or on
courses that differ by 180°. Meetings between moving objects on different courses are described under
intercepting.

When solving rendezvous problems, it does not matter whether the airspeeds or ground speeds of the
aircrafts are taken into account. Since different wind conditions can occur in different flight levels, more
accurate results can be expected when ground speeds are used.

Flight computers are particularly suitable for these problems because of their logarithmic time scales.

2.3.8.2. Airplanes on opposite courses

For the data of an example Vo >y, =400 km/h Vg, = 500 km/h < <t

given in Fig.2.3/20 the

position and time of the ~ dy ah d2

meeting shall be calculated. point A meeting point G point B
l‘ D =180 km -

Solution: D 180 km . Fig.2.3/20

_— tmp = = = 0.2h =12 min

Va1 + Va2 900 km/h

di =tmp Va1 =400 km/h x 0.2 h = 80 km

d2 =tmp Va2 =500 km/h x 0.2 h = 100 km

The settings of Fig.2.3/21 are required for this example on a flight computer.

l r l

D V1 + V2 d1 V1
180 900 80 490

1 |

1‘2 A 12 A
¢ 1 tp

| 1 |

2.3.8.3. Airplanes on the same course
Fig.2.3/22 shows an example in which an aircraft with ground speed ve1= 400 km/h flies from point A to
point B. A second aircraft follows on the same route with va2 = 440 km/h, but overflies the point A

to = 12 min later. It shall be calculated after which time Tmp and distance D the first aircraft is reached.
Fig.2.3/23 shows the settings on a flight computer.

Vv Vg1 =400 km/h

Ve oy, = 440 km/h

- d ———>

I
point A meeting pointC point B

- D -
- -

119



Solution:

1.Distance d = va1 to = 400 kh—m %h =80 km

; _ d _ _80km _
2. Time Tmp = Ver-var = 10 kmo - 2h
h

3.Distance D = Voo tmp = 440 kTm 2 h = 880 km
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2.4. Angle calculations

2.4.1. Triangular calculations

2.4.1.1. Calculators with log sine and log tangent scales

Example:
. H 18.7 100
siho = — { I
5
i L_——sin
height H=5km - 155
° — tg 45=1
distance D = 18 km tan o = % 1?.5 ﬂ g
Fig.2.4/1 tana _ 1 5 18
H D D

2.4.1.2. Calculators with log sine scales

Example 1:

Because at small angles sin a = tan a, with these two arithmetic operations a sufficiently accurate result is
achieved:

- tan a = 0,05

350m— gm
7km— 1 Q

- 7 km tano, —— N
g <
O 9o Fig.2.4/2

S//'7
Example 2:
The lateral displacement V can be exactly determined using the sinus theorem:

D
"" o V— o S0

Vo) )
N / 900:
V= 6.97 km My a s,
o 7
A
relative bearing oL = 5° Fig .2.4/3

2.4.1.3. Calculators without log sine and log tangent scales

Example:

The Bellamy formula is used to determine a drift of d = 36 NM over a distance of D = 400 NM. The
required wind correction angle is calculated:

tan owca = 43_6 =0.09 - awca = 5.14°

dx573 L, quweal] o 38573

5 —i00 =~ 5.16

After equ.1.30/1 applies: [T =
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On computers with logarithmic scales the setting according to Fig.2.4/4 is required:

drift = 36NM —— smﬁ WCA = 5.16°
distance= 400 NM —— c 4

2
573 Fig.2.4/4

Computers without sinus or tangent scales usually have a diagram slide with which this task can be
solved graphically. After setting the compass rose to any course (360° was selected in Fig.2.4/5), a 36 km
long distance is marked from the centre (red dot). After setting a 90° larger course (90° in Fig.2.4/6) and
positioning the distance 400 below the centre point, the angle 5.5° is found under the drawn point.

s
1 480
i :
— 400 500 ~
S ] Jengll) ]
I
T
0 y "£
H
i Fig.2.4/5 Fig.2.4/6
300 -4 H 400
15 ¥
A

2.4.2. Wind component determination

For the example shown in Fig.2.4/7 the components vw. = 10 m/s
and vwc = 17.3 m/s are calculated according to the sine theorem.

vwe VwL Vw

sina sin (90 - o) "~ sin90

1730

0 3
AW\ 60 9

For calculators with logarithmic sine scales the P .
setting according to Fig.2.4/7 is required. V%

A
Ny

122



Computers with diagram slides often have a special wind component grit for determining the wind
components (Fig.2.4/8). The computers described under 1.12. are used in the same way (see Fig. 2.4/9
and 10). For more accurate results it is recommended to double the wind speed so that the results have
to be halved.

N
)
vwe= 17
vw= 10
| el i
[ 1T I ). ]
\ oderdt j
20
NN SNz NN
30
H
40
HH
50
RS Fig.2.4/8
12
|
50| .I ll'lr[“”'g“”;a
- 6¢
7 0 . 1o
§ 40
g WIND| (—)
030
[a}
=
/
320 7
w .
- 10 /2 + ;’
, v £A %
2 WL § st
10 20 30 40 50 *

CROSSWIND COMPONENT

V
Fig.2.4/9 }* WC*. Fig.2.4/10)
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2.4.3. Drift correction

When flying without wind correction, the airplane drifts away from the route. If it is not possible to
calculate the wind influence in advance, the distance off course and the distance flown can be
calculated by finding the position.

On computers that have a tangent scale, the calculation of the corrected heading is simple. For this
purpose, during the flight from A to B, the distance off course a and the distance flown b must be
calculated by defining the position at point C. The angles a and 3 are determined by the tangent. A
heading correction by the angle a leads to the continuation of the flight along a parallel to the route,
the correction of the heading by the angle a+p leads directly to target B. This approximation solution
is based on the incorrect assumption that the drift angle is equal to the wind correction angle.

The following example explains the calculation (see Fig.2.4/11):

distance off course a 7 km angle to parallel course a 8° right

distance flown b 50 km angle to intercept 4° right

distance to be flown c 100 km total correction o + B 12° right
c_—Ta_
T p
a

A la B B
0 o |

On computers with tangent scales these settings of Fig.2.4/12 are required:

o =8° U B =4° U

N
)]

o
T
-

o

o

Many navigation computers have a DRIFT CORRECTION window whose tangent scale works together
with the logarithmic time-speed-distance scale. For example, to calculate the quotient 7/100 in the
logarithmic scale, the 70 on the outer scale must be set opposite the 10 on the inner scale. The result
is tan B = 0.07 or tan 3 = 0.7, which corresponds to angles of 4° or 34.9°. Both values appear in the
DRIFT-CORR. window. In order to determine the correct result, an approximate advance calculation is
necessary (at a distance of about 60 km, a lateral deviation of 1 km results in an angle of 1°). Fig.2.4/13
shows the required settings:

10
® T
A

OQ\FT CO/qQ

With the logarithmic scales of any navigation computer

. L S : : Q So
this calculation is also possible in good approximation. 1
According to equ. 1.30/1 applies to small angles (see N /5;9
Fig.2.4/14): 9

all~ 57.3 -2 _573 L _gp2°
[°] b 5350 8.0
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2.5. Level turn

2.5.1. Determination of the turn radius
Fig.2.5/1 shows the balance of forces in the stationary level turn (F. = lift, Fw = weight).

2 v
For the radial acceleration applies: b = I\:;— <
So the centrifugal force is: Fc=m \éi
< E=mb
Y
From this can be derived for the radius R: s
V 2
m— 2 2 =
tany = Fe - R _V© R= —Y" | [25/1] Fumm 9
Fuw m g Rg g tan
Fig.2.5/1
A computer of type NL has the mark ® in the tangent scale for this calculation, which is determined
according to Fig.2.5/2.
1@ tan u 1 5 | h? 7.87 tan w
= g- 7.87 =10 _— i | Fig.2.5/2
R v2 km radius[km] v2
o
v:100 [km/h]
2.5.2. Determination of the three-sixty time tseo
vz 2R 2nv? 560 _ 2TV
t 360 tago g tanpu [sec.] 36 g tanu [2.5/2]
With— 2% = 0178 equ. 2.5/2 gets this form: t _ 0178 Vi
3.69.81 36000 tan u
Therefore, in the tangent scale of the NL computer, 0.178 tan
the additional mark taeo is located at the position i ‘ a Fig.2.5/3
tan 10° = 0.176, so that this setting scheme results t360 ‘ Viamsm
(see Fig.2.5/3):
If the curve radius is known, the curve time can be determined in the distance - time - scale. In the
additional scale above, the time for curve angle & < 360° can be determined.
2nR v 2 Vikm x
N M en ki _ 27tx3600 [2.5/3]
t3s0 R t360 Ry tse0,.,
If the quotient v:R is set, the curve time in seconds for a three
sixty circle results at the mark tsso0, which is located at position T ]
2-2-6-2 (2nx3600 = 22620). An additional scale allows the deter- 180° 360° O v
mination of times for curve angles 6 < 360°. Fig.2.5/4 shows the t 360° |
setting for the following example: (%) 2962 300
! ( 1 ) i
airspeed v 300 km/h 100 199 264
bank angle p 15° T t f !
180 360 R
curve radius R 2642 m
time taeo (6 = 360°) 199.1s Fig.2.5/4

time t180 (6 = 180°) 100 s
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2.5.3. Determination of the angular speed w;

With w;=

and equ. 2.5/2 one gets: v
360 S v [ kmih] Vikmin)

2n ® {rad} _gtanu  36x9.81xtanu _ 35.3xtanu
S| = = =

This formula supplies the angular speed w; in radians. In practice, however, the result is required in degrees per
second. Since for angles below 15° the tangent is nearly equal to the argument, the tangent scale of the NL
calculator is suitable for this calculation.

o 2n

1= —— fora = 15°follows from this:  o|fad| = 2715 _ o518 (compare: tan 15° = 0.2679)
360 s 360
0z [*/s] tan
This results in the following setting scheme: i | Fig.2.5/5
35.3 v
[km/h]

Note: The mark w, calculated here does not exist in the computers of the NL series published until now.

2.6. Radio navigation
2.6.1. Distance determination with the instrument "DME plus®

Fig.2.6/1 shows how distances are MC < o10-
determined with the help of a bearing. magn.
The calculation of the distance D from 1
the position to VOR 1 with the instrument
"DME plus" is shown in Fig.2.6/2.

VOR1

D = 40.6 km —{ %
“m
VOR 2
couRsETorRoM N/ AGNETIC NDB
MAIN VOR HEADING QDM = 90° DF

1. The magnetic course MC = 010°
is set opposite the mark A.

2. The mark B is set to the
magnetic bearing to (QDM):
MBi = RB + MH (70°+20° = 90°).

3. The pointer is set to R 120°.

4. From the value 80 km (distance VOR 1 - VOR 2)
along the red lines the distance D = 41 km is found
in the vertical scale.

061
TR

TRACK LINE




2.6.2. Distance determination using the instrument ,,PILOT'S POCKET DME*

Example (see Fig.2.6/3):

magnetic course 010°
magnetic heading 020°
relative bearing 055°
radial 255°
distance destination - beacon 60 NM
bearing destination - beacon  135°
distance D 57.3 NM

The instrument ,,PILOT'S POCKET DME* (see Fig.2.6/4)
reproduces the situation. The marked point C corres-
ponds to the location of the beacon, the center A to the
destination and point B to the aircrafts position.

AMD RADIAL
| %ﬁ“’“'m O SECONpggy
o B 5
S g
i a5, .
e 2D,
- : -.\.‘\1:‘
2\
l - -
Ny
A &
. i
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destination

L T =
Y sion iy ¢ x50

magn.

135°

DF

‘ The MC mark is set

to magnetic course
MC = 10°.

The green arrow is set to
MBt (QDM) = MH + RB
=20° + 55° = 75° or to
radial 255° (VOR).

A point is marked on the
distance ring 60 NM in
the direction of 135°.

A line through the
marked point parallel to
the dotted lines inter-
sects the distance scale
at D =57 NM.



2.6.3. Line of position approach and procedure turn according to Gross

Example (Fig.2.6/5):
actual line of position (LOP 1) 250°
requested line of position (LOP 2) 300°
intercept angle 1 90°
intercept angle 2 45° 300°

280°

250° intercept angle 90°

intercept angle 45°
20°

210°

The instrument "INTERCEPTOMAT" is used to simplify the calculation of the headings during the
approach of lines of position and during procedure turns. Fig.2.6/6 shows the side intended for changing
to bigger QDM and for left procedure turns.

In the example the change from the QDM = 250° to the QDM = 300° is to be undertaken. First the new line
of position 300° is set (1). The old line (250°), which is set at the red pointer (2), is located in the grey 90°
sector. Therefore, the intercept heading of 210° (300° - 90°), which is displayed at 3, is recommended.
Twenty degrees before reaching the new course, i.e. at a QDM of 280° (to be read from the arrow of the
dotted line 4), it is recommended to turn to the new course of 300°.

Req. QDM
bigger
than ACT.GQDM

\\\\\\\'.\\\

2
A

A



The same setting of the instrument is used to explain the course determination for a standard procedure turn
(see Fig.2.6/7). After setting the landing direction 300° (1), the outbound course of 120° is read off at 5.
Turning to 90° (readable at 6) initiates the procedure turn (120° - 30° = 90°). After one minute flight with
heading 090° a right turn is necessary to the intercept heading 255° (read at 7). This crosses the approach
course at an angle of 45° (300° - 45° = 255°).

Q,Q
&
o Fig.2.6/7
RWY 30 S
120°

300°

2.6.4. Holding pattern

Form and procedure of standard holding
patterns are mandatory. Compliance with the
prescribed entry procedures is made easier by
technical aids (Fig.2.6/8 shows an example, the
handling of which is not described in detail here).
Deviations from the flight path due to the wind
drift are to be avoided by corrections of the
headings and the flight times. It is common
practice to use the double wind correction angle
of the inbound leg in the outbound leg and to
shorten or lengthen the outbound time accor-
dingly. Since the bank angle is also specified, a
wind correction is not possible in the curves. Fig.
2.6/9 shows how the shape of the standardised
route changes if the wind is corrected in this
way. The BAC HOLDING PATTERN COMPUTER
is a tool for more precise calculations of out-
bound heading and time. The device can be
used on both sides (for heights below and above
14,000 ft). The following example explains the

handling (see Fig. 2.6/10):

altitude > 14,000 ft
indicated airspeed 280 kt

inbound track 360° N §
true wind 045°/ 60 kt \

bank angle 25° beacon

WCA

After setting the inbound track to 360° and the wind A
direction to 45°, the red drift triangle is simulated in
the computer. The lower, blue congruent triangle is
used to determine the wind correction and the time
for the outbound leg. The circular arcs are lines of
equal ground speed; however, they are labeled with
times in seconds which are directly proportional to the
ground speed.

shortened
flight
time

standard-
holding
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ground speed

true airspeed

outbound - WCA - 28°

wind speed 60 kt

ground speed

true airspeed
outbound -time 65 sec

wind direction 045°

inbound track 360° Fig.2.6/10

The accuracy of the outbound heading and the outbound time calculated using the BAC-HOLDING
PATTERN COMPUTER is shown in Fig.2.6/11 using the example given here. Under these conditions, a
wind correction angle of +7° is determined in the inbound leg. With the help of the HOLDING PATTERN
COMPUTER one will find a wind correction angle of - 28° and a time of 65 seconds in the outbound leg
(see Fig.2.6/10). These values result in a flight path which is shown to scale in red in Fig.2.6/11. The
black dashed line shows the correct procedure in still air conditions. The calculator generates a correct
result, because the displacement of 1117 m at the end of the inbound curve is negligible. It is note-
worthy that the fourfold amount of the approach wind correction angle in the outbound leg is somewhat
too small in the higher holding patterns.
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standard
holding

/

P =~

beacon d+ drift in the

outbound turn

ldz
‘ dz drift in the
) outbound leg

1i7m Fig.2.6/11

ds drift in the
inbound turn

The calculation of the track (red line) is based on the following parameters:
- vias = 280 kt
- bank angle = 25°
- H=16,000 ft
- ISA
- v1as = 353.2 kt = 181.7 m/s
- start heading (over the beacon) = 007°
- outbound heading = 180° - 28° = 152°
- outbound time = 65 sec
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2.7. Interception

2.7.1. Simmonds-Goudime four vector calculator

The four vector calculator described under 1.8.3. is used to calculate courses for the interception of a

moving target (e.g. ship).

The handling of the computer is described in this example:

true course ship 315°
speed ship 30 kt

true bearing (aircraft - ship) 360°

true airspeed aircraft 100 kt

true wind 225° /40 kt
true intercept heading 330.3°
relative approach speed 90.0 kt

Fig. 2.7/1 shows the three vectors ship speed (CB), wind
speed (EC) and aircraft speed (AE). The fourth resulting
vector AB is to be found, which stands for the relative
speed of the approach, from which the flight time can be
calculated from take off to the meeting, provided that the
distance between aircraft and ship is known at the
beginning of the action. In addition the angle a is
searched, from which the heading of the airplane can be
determined. The hatched triangle A'BC consists only of
the three vectors A'C (TAS), CB (ship movement) and A'B
(relative or approach speed) and applies to the special
case of calm. It should be noted that the CB vector of
the ship's speed is drawn in opposite to the direction of
the ship's movement, since it affects the course of the
aircraft in a different way than the wind. Against the wind,
which comes from the left, must be corrected to the left.
The airplane, which is about to meet a ship moving from
east to west (i.e. coming from the right) with a northern
course, must also correct to the left. The arm SHIP
SPEED 8 in the computer is therefore mounted against
the direction of the attached setting element 7 (Fig.1.8/7
and 8). The diagonals of the two parallelograms AFCE
and ABCD intersect at point M. For reasons of symmetry,
the point M divides the diagonals in the midpoint. The
construction of the computer is based on this law.
Another graph of the vector diagram shows Fig.2.7/2.
This can be transformed once more, as all four vectors
are arranged at corners of a square (Fig.2.7/3 schemati-
cally shows this computer setting). In both images, the
law remains that the intersection point M is halving the
diagonals. Fig.2.7/4 shows the calculator with the
indicated positions of the speed arms and the rack pairs
inside (dashed lines). Since the circular marks on the
middle parts are always in the middle between their
attachment points, the correct end position of all vectors
can be found by overlaying these marks. Of the eight
values described by four vectors (direction and amount),
two can be calculated with this computer if the other six
are known.
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AB =781 kt




The two unknowns of this example are determined as follows (see Fig.2.7/4):

1. 360° are adjusted on the bearing element and locked (1).

2. The SHIP SPEED element is set to 315° (2) and 30 kt (3) and both are locked.

3. The airspeed element is set to 100 kt (4) and locked.

4. The wind element is adjusted to 225° (5) and 40 kt (6) and both are locked.

5. At the airspeed element only the speed is fixed and at the bearing element only the direction. The direction
of the airspeed (7) and the arm of the relative speed (9) must now be brought into a position where the two
marks (8) are exactly above each other in the window. Then the heading of 330° can be read off (7). The
relative speed of the approach of 94 kt can be read from the bearing element (9).

/@ﬂ i, SIMMONDS - GOUDIME i
1 33 1 FOUR VECTOR COURSE CALCU N 2/ ”'/"’///,,
QQR\NG R TRAC}( Made in England a2, 2
SET TO TRACK
>
0 A
q
6/ L W
”fllllmllfmmn nn\\\\\\\\\\\\\\\\\‘“
U
\\\\Q\\\\“\l\f\ ¥7 Is ! 7
5 e
X

° ° S 6 n 9
”i”’/”ulfmmn ||1|Il\\\\\w\\\\\\

SIMMONDS AEROCESSORIES L™

Fig.2.7/5 schematically illustrates the special situation of calm. After setting 12 \\\
a wind speed of 0 kt the heading of 348° and the relative speed of 78 kt are \
found in the same way. Other special cases in which the SHIP SPEED \
element does not occur are dealt with under 1.8.3. \
\
\\ Og'
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\\
\
\
\
\
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2.7.2. Dalton computer VC-2

1H = 353.90°
The following example describes how the intercept heading to a cg\b B 300"
moving target (ship) can be calculated using the VC-2 computer: \
/076\0
true bearing (aircraft - ship) 360° v, = 25 kt \> A
true course ship 045° N
true wind 315°/25 kt Vour = 10 Kt
ship speed vship 10 kt Ve = 100 kt
aircraft speed vas 100 kt
true intercept heading 353.9°
Note that in Fig.2.7/6 the direction of the vector of the ship's speed is a.=6.09°
plotted against the direction of movement of the ship (see chapter 2.7.1.).
c Fig.2.7/6

Solution:

1. The upper disc is aligned to 360° (bearing
aircraft - ship).

.
asetsbasisesilir
RS

%

2. The vector ship speed (point A) is marked on 2,
the upper disk with the help of the grid S iz (‘f’ %‘
direction 45° / length 10 kt). IR IS SIS

. . . SZoete’s { D 7
3. The vector wind speed (point B) is entered on &%’?&’&%@&‘%’*%&:M&%&M

o=
=

S b SR
the upper disk with the aid of the grid so that it B ) T I S e
SIS B e
begins at point A, runs in the direction of 315° “o'mgg«tf X% 1"”"2‘:“@3‘:&%3“3&%
and has a length of 25 kt (see Fig.2.7/7). The sy :

length is determined by counting on the grid.

4.The middle disc is adjusted so that the grid

. . . o SRS,
lines run through point B and a point C on the T A 0%
b e I
centre line, which has a distance from point B &’@7‘%%;&,?%%%&
corresponding to 100 kt (vras). M Fig.2.7/7
-
5. The green course mark indicates the intercept
heading 354° (Fig.2.7/8). Ve

T 77777

35, % S

aezatey
-
EaEnEaLY!
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2.8. Descent

The slide rule NL-10 U has an additional scale for the calculation of distance and time of descent from the
height to be left and the average values of ground speed and rate of descent. If, for example, one have to
descend from an altitude of 9000 m with a vertical speed of 6 m/s, it takes 25 minutes with an average

ground speed of 480 km/h and a distance S of 200 km:

km _ 25

t= _9000m  _ 9000 0166 =25 min S=tvs =22hx4g0 KM « 480 = 200 km
6 60 h ~ 60
6— 60 —
min
%’0,0166 =25
DN
Fig.2.8/1 schematically 1 2 £ :
shows the descent scale ‘ <> :
1 166 6

of the computer NL-10 U
and its setting for this

descent mark
logarithmic descent scale

—

example. ‘ ‘
100

600

g
25
60 480 =200

The slide rule NL-10 MK has an additional scale for the calculation of the rate of descent from the height to be
left, the distance and the average ground speed. The following applies to the example used here:

AH height to be left
v=2oH_ aH _ 9km  480m_9-480-0.277m _ g M Vv vertical speed (rate of descent)
VTt S 200km 3.6 s 200 s S S distance
V .
VGA average ground speed during descent
v, =6 m/s AH = 9000 m
S =200 km
. . . 30°
Fig.2.8/2 schematically 2 31| 4 - 6 8 20
shows the descent f f b bt |
EEFEE] rhtrrrtrrrrh o e 5 i | ;i
scale of the computer | f IT \ %TJT} 1 T I I ]j_'l_i_[hl_;j
NL-10 MK and its 1 ST 4 5
setting for this 3 4 T - e
example. Feoccbeeetbonneb ot e Lo o on|
1795 I 179° _
T M
OO OOy oy T e v o
2 3 4 5 $ 8 %1 20
i
= 480 km/h

2.9. Dead reckoning
2.9.1. Plotting board

leg

Fig.2.9/1 sh I board f find A-B1B-C|C-D

ig.2.9/1 shows a plotting board for position finding - - - -
by dead reckoning. Two disks are located above a magn. heading 045 360 320
base plate, the lower one is provided on both sides qlstance [NM] 100 50 150
with a rectangular grid of different scales. The upper time [h,] 05 (1.25 0.75
transparent disk with a compass rose is rotatably true V‘{md 030°/ 50 kt
arranged above it. The handling is described in an true? ayspeed 209 kt
example (see Table 2.9/1), where the location is variation 10°W

searched after the flight on three different courses.
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2.9.2. Plotter Ko5

4 2 5 1
/
‘t\\ Q 4 9 S “911“11:17“Hxlu///u1501Hf'uHIQOHMHHFO‘%SNM
N Vi

N\
‘!}‘\\*

The plotter Ko5 (see Fig.2.9/6) is used to
draw a flight path on a map of scale

1: 500,000. Its additional use as a triangle
calculator is described under 1.9.3. The
plotter has the mileage scale 1, the velocity
field 2, the pointer 3 and in the zero point of
the mileage scale a movable compass
point 4, which makes it possible to use the
plotter like a drawing triangle and at the
same time like a circle. The slot 5 in the
center line 6 is used for drawing in course
markers. The handling is described using a
two-leg route (see Table 2.9/2 and Fig.
2.9/7):

R

3

[\
[L e
%Z AN

\ N
W
/////Tmhmt\\n\\\\\ W

Qi

leg
A-B |B-C
true heading 035° | 300° :
time [min] 10 15 able 2 9/2 Fig.2.9/7
true airspeed 100 kt .
Nt
Solution:
1.In order to draw the first leg on the
map, the pointer must be set to
the first heading (035°), the center 035°
line of the plotter must be placed
on the starting point of the leg (red
triangle) and the pointer must be mark RSN RA A AT
aligned parallel to a meridian. Then §\\\\\\ e s ’/’/
one draws a mark through the slot Nee? // 2
into the map (shown red in Fig. & s =
2.9/8). Then the line of the first leg iy %
can be drawn in the map =
(connecting line of the start point A ==
with the course mark). =
) A 2=
>
ye Fig.2.9/8
o
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2.In the velocity field the
intersection of the air-
speed line 100 kt with
the 10 min - line is 4 B
marked (point X in Fig. y
2.9/9). The length from
mark X to the compass ® A
point corresponds (in a
map from scale e
1: 500,000) to the distan- &
ce of the first leg. The N 5
plotter is then placed on
the map in such a way
that point X is on the
starting point A (red
triangle) and the line
100 kt is on the drawn
route. The compass point
then marks the route
point B. The plotter can
now be rotated around
point B to draw the
second leg and to find
point C.

£11

e85
&

A\

S
S N
AN\
N

D\
ENEOON
o5 20 A\
20 \\\\\\

% g
W, 0 02| of | oy

"y, 00 | 210 | 220 W\
ZRaR NS

3. After setting the pointer
to 300° (course of the
second leg), the
plotter is rotated
around the compass
point (route point B)
until the center line of 300°
the pointer runs
parallel to a meridian.
Then one draws a line
through the slot of the
plotter into the map
(shown red in Fig.
2.9/10). This marks the
direction of the second
leg. Its length, i.e. the
position of the point C,
is again determined by
the intersection of the
15-minute line with the
air speed line 100 kt.

A
!
0

g I "y
\
e 0 2,
£)

)
NS

|

\

o
%y 0»%
....""lu ~
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2.10. Rhumb line calculations according to Clemons and Nelson

2.10.1. General

The computer A-5 is used to calculate the length of the rhumb line and the loxodrome course. Fig. 2.10/1
shows the abbreviations used in the calculator and the data of an example.

Explanation of symbols:

v rhumb line (loxodrome) course

ML mid.latitude

DL difference of latitude

DLo  difference of longitude

A« B rhumb line distance ML =20°N--—

2.10.2. Calculation of the length of the rhumb line

= ——-%?-““59%}\& \F‘\‘)
|

The cursor of the pointer is set to the
mid latitude ML= 20°.

=~

The intersection point of the mid

4 latitude ML= 20° with the center line
y of the pointer is set on the line of the

:-""-{' length difference DLo = 10°.

The index arrow is set to the
difference of latitude DL= 20°.

The center line of the pointer
indicates on the inner scale
the loxodrome distance

L = 1330 NM (see note 1).

1500

- EEEE
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Note 1:

At the beginning of the calculation, the pointer should be at the distance zero and the INDEX arrow at the
difference of latitude DL. Then the pointer is moved clockwise with the cursor set to the mid latitude
beyond the index line (longitude difference 0) to the longitude difference line. If the pointer has to be
rotated by more than 360°, the outer scale is relevant for the distance indication. In the example calcu-
lated here, the pointer from line 0 NM had to be rotated approx. 90° in clockwise direction so that the
point ML = 20° on the rotatable pointer line stands above line DLo = 10°. Therefore in this case the
distance can be read off the inner scale.

Note 2:

The complicated analytical determination of loxodrome distances is avoided in this calculator by the appli-
cation of a nomogram, which in principle has the form shown in Fig.2.10/3. The shape of the curves leads to
the fact that in some cases (e.g. with small latitudinal differences and at the same time large longitudinal
differences) intersections at a very small angle occur in the diagram like in the computer, which complicate an

exact distance determination. The example calculated here is drawn into the nomogram by red arrows. The
calculator A-5 provides a rhumb length between 1325 and 1330 NM. The result can be more accurate by

multiplying the differences of longitude and latitude by a factor and dividing the result by this factor.

0
ML
| 20 \
DLo 50 \
DLo 40
DLo 30°
DLo 20°
DLo 10°
70° :
0
DL AN
l 20 Dist3300NM _ Dist.2400NM Dist.1800 NM — Dist.1330 NM
\
50°

2.10.3. Calculation of the course of the rhumb line

In order to determine the loxodrome

course for the example selected here, hww“rg“;fﬂw& ..,:_:_m'“
the latitude difference DL= 20° must be “*;“mug;::z ey,
set opposite the rhumb line length 1330 /"’ “"“‘"‘mo‘?\‘?’&: \ 8
NM (see Fig.2.10/4). Normally, the & %

) i e ¥ O : -
course angle 9 is now read opposite o8 &8 B0 N
the index arrow. In this example the Wji:”'” | 16\50'1 L 'J’r.,.

AN

arrow is in the sector 0 - 45° (marked
by "WARNING"), so that first the
"equivalent latitude difference" must be
determined on the back of the com-
puter (see Fig.2.10/5).

/‘//Wﬁﬂfuh'if ”ﬁ;"}"m‘}m\ ‘\\\\\\\\

40°

TANCE - naUTICA-

w100
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The equivalent latitude difference is
found by setting the INDEX arrow to 0°
and the intersection of the mid latitude
ML with the pointer line over the line of
the longitude difference DLo = 10°. Then
the pointer line will indicate the equiva-
lent latitude difference of 9.5° (see
Fig.2.10/5).

R Y

s wEAcAANAE

If the distance of 1330 NM is now set
opposite the equivalent latitude
difference of 9.5°, the index points on the
inner scale to the angle 9 = 25.5° (see
Fig.2.10/6). The course of the loxodrome
is calculated from the course angle % as
a function of the quadrant according to
Fig.2.10/7. In this example, the rhumb
line lies in the northeastern quadrant,
where the course angle is equal to the
true course. In the north-western
quadrant one receives the true course
after subtraction of the course angle 9
from 360°. In the southwestern quadrant
180° must be added to the course angle.
In the southeastern quadrant, the true
course is obtained by subtracting the
angle 3 from 180°. n

To simplify the angle calculation, the
spherical image is projected into a planar

surface. This is possible if the size of the

area on the surface of the globe is

limited. With the calculator A - 5, loxo-

drome distances can only be calculated

if they lie on a hemisphere (i.e. do not N,

cross the equator), the differences of the
longitude and latitude coordinates of the B
endpoints do not exceed 50° and the A 9

mid latitude does not exceed 75°. The A
calculable area on the globe's surface is
therefore limited by great circle arcs of W E
50° with a length of 3000 NM (one nauti- 9
cal mile corresponds to one angular

minute on the great circle: 50x60 = A
3000). The diagonal of such a square
therefore has a length of 4242.6 NM B B

(3000 2 ) and therefore the distance
scale of the A-5 computer ends at this S

value.
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The calculated rhumb line is located in a spherical triangle, which is
projected into a planar triangle for simplification (see Fig. 2.10/8). In
this applies to the angle 9:

arc length of the angle DL (difference of latitude)
length of the rhumb line

cos 9 =

equ.DL

In the example used here, the length of the rhumb line is 1330 NM.
Since the meridians are great circles, the difference of latitude of

20° corresponds to a distance of 1200 NM (20 x 60 = 1200). Thus

one would obtain a course angle of:

1200
cos¥ = — =0902 — % = 255°

1330

This method becomes too inaccurate for angles 3 < 45°, which is why in these cases the angle

90 - 9 is calculated instead of the angle $. This is calculated using the equivalent distance of
latitude (equ.DL), which in this example is 9.5° (see Fig.2.10/5). With these 9.5° and the distance
1330 NM one gets & = 25.5° (see Fig.2.10/6). In Fig.2.10/9 the logarithmic scales A, B and C of the
calculator are shown in a position where the result 3 = 75° is obtained in scale C. These two
examples demonstrate that the angles in scale A correspond to the lengths of the great circle arcs
and that the course angle is calculated from the division result A : B using the cosine:

. 40

LD =14° (= 14 x 60 = 840 NM) g . 80 _ oo —— 9o 750°
E le 1: COSs = = . .
EXampie L istance rhumb line = 3250 NM 3250

Earlen. LD =10° (=10 x 60 = 600 NM) osg - 60 _ oo o _ 7500

distance rhumb line = 2350 NM

example 1 example 2
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2.11. Pressure pattern according to Bellamy
2.11.1. General

Fig.2.11/1 shows the assumed profile of the pressure level 697 hPa (corresponds in ISA to 10,000 ft) in the
vertical section. During the flight in constant pressure altitude of 10,000 ft from an area of high air pressure to
an area of lower air pressure, the altitude above main sea level decreases and a drift occurs (on the northern
hemisphere to the right). According to Bellamy, the drift speed vn is calculated from the difference between
true altitude (radio altitude) and pressure altitude. From this one determines the wind correction angle for the
so called single heading flight, which is close to the minimum time route.

A0 o
Lo
et °°
_
D4
! 10,000 ft above MSL
Do
io altitude
T/ H
elevation
J MSL
position 2 position 1 i
Fig.2.11/1
Vn drift speed in kt
D difference in feet between true altitude above
The Bellamy formula for the drift MSL (radio altitude + elevation) and pressure
speed Vn is: altitude _ .
21.47 constant (the accuracy of this factor is

irritating, since the formula can only be an
approximation if it fails completely at the
_ 21.47 (D,- D,) 2.11/1] equator due to sin 0° = 0)

" 8 sing ' S air distance in NM (obtained from the product
vias x flight time t, which assumes that the
wind influence is known)

Q the average geographical latitude of the route

VTAS true airspeed

2.11.2. Calculation of the Bellamy formula with conventional navigation computers

For the calculation of the drift according to the Bellamy ; ‘,_9. 35 LBS
formula, various calculators have a special scale for the 3 \ “1 1 ' J ! i‘
mean geographical latitude of the flight route, which is \"\ [

marked with LATITUDE FOR PRESSURE PATTERN. As " E’L_ T

can be seen in Fig.2.11/2, behind the angle of these 1%0

scales lies the quotient 21.47 / sin ¢ , as shown by the bc‘ > \ 1 ' 1 G '.r : |
_ o. K A y ) I

example ¢ = 25°: %! ’\Q \\\\\\*?'10 15 /

2147 2147

sn25° ~ o042 ~ 208
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Fig.2.11/3 shows the settings of a usual navigation calculator for the following example:

D+ +10 ft
D> -150 ft
D2 - D4 -140 ft
mid.latitude ¢ = 30°
VTAS 200 kt
time t 30 min
S 100 NM

drift speed 60.11 kt

D2-D

Vo= 2147 1409 - gh11 V”‘ T

"7 100 sin30° 2147 | g
sin @

The negative sign of the drift speed means a right drift at this
procedure.

To calculate the drift angle from the drift speed see ch. 2.4.1.3.

2.11.3. Calculation of the Bellamy formula with the computer 1-CH-1

For flights over water in latitudes above 15°, the drift speed and the drift angle can be calculated from the
differences D1 and D2 (radio altitude minus pressure altitude) using the 1-CH-1 calculator. The following
example explains the handling of the computer (see Fig.2.11/4 - 6):

VTAS 200 kt
air distance S 120 NM
mid. latitude ¢ 53°N
D2 - D4 - 80 ft

According to the Bellamy formula one gets a drift speed v, = - 17.92 ki:

00“\
1o
_ 2147 (D2-D1) _ 21-47.(- 80 _ _4179kt Z
Ssin ¢ 120 sin 53° f
D1
i
Do
v v 5,000 ft above MSL
RA1
RAo
H
o MSL
position 2 position 1
Fig.2.11/4
«————— S — »
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These settings are required on the logarithmic scales of the computer:

¢ 40 45 50 ’

» > ‘“\'\'“h ﬁl,, ¥, 70
The difference D2- D1 = - 80 ft \\w{\\n *f il :1/,/11/,
is set opposite to the air \‘\Q\“ g0 60 70 809p,!

20

distance 120 NM.

e Opposite to the mid. latitude
@ = 53° one can read the drift
speed vn = 18 kt on the outer
scale.

-
Eﬁminu\m\

e The true air speed vras = 200 kt
(on the inner scale) is set oppo-
site to the drift speed vn = 18 kt
(on the outer scale). This is no-
ted in the printed instructions:

“GS is the estimated ground
speed in knots. If unable

to estimate GS, use TAS in
knots.”

RN
gv O

00%
oS

gy

e In the drift angle window, the
value DA =5.2° is read (the
drift angle - scale is a sine
scale).
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3. Altitude and speed calculations

3.1. General

3.1.1. Pressure curve over the height p = f(H)

In order for all altimeters to display the same altitude value at a measured air pressure, it was necessary to
define the pressure decrease with the altitude as a uniform international value. The curve of the temperature
between the altitudes 0 and 80 km in the International Standard Atmosphere (ISA) was uniformly determined
(shortened shown as a black line in Fig.3.1/1). A previously used isothermal atmosphere assumes a constant
temperature of 50° F over the entire altitude range (red line in Fig.3.1/1).

H [km]
20
b= -65K/km
11
10—
T =+ 50° F (283 K) = const.
216.65 K
=N T T —
200 240 280 — temperature [K]
Fig.3.1/1

To=288.16 K= +15°C

When calculating the pressure curve over the height, both the decrease in temperature and in the
acceleration due to gravity g must be taken into account. To simplify the calculation, the constant
acceleration go = 9.80665 m/s? is used for g and this atmosphere is called "geopotential". The atmosphere,
in which a decreasing acceleration due to gravity is assumed, is called ,geometric" (e.g. the counterpart to
the geometric height Z = 10,000 m is the geopotential height H = 9,984 m).

The decrease of pressure in the geopotential atmosphere for 0 < H < 11 km is calculated using the
barometric height formula according to Laplace:

dp=-p g dh  [3.1/1]

At the bottom of the air layer of the height dh and F

the area F (see Fig.3.1/2) the pressure due to the |
weight dm x g is higher by the amount dp than at | | | "
the top. From this the equ. 3.1/1 can be derived dh
(the minus sign must be inserted, since the .
pressure decreases with height): f

dV=F dh Fig.3.1/2

dn=dVp=F dh p

dp=9M9 _ Rdhpg
F L
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With the equation for air density (derived from the general gas equation according to Boyle and Mariotte and
Gay Lussac)

p:

3.1/2
RT [ !

one obtains from equ.3.1/1 the law of pressure decrease with altitude for 0 < H < 11 km

dp _ Qo dh dp _ G dh b= -65K/km)
P RT P R (To + bH)

H
dp __ Y% dh dx — Inx dx
p R/T,+bH
0

= — In(a + bx)
a+bx b

o 1 P
Inp,-Inp,= — i b[ln(ToﬂoH)J n %

o, =— Rb {In (T,+b H)- InTJ

9o
Ao NCD)
In " = [ TotPH . - H> [3.1/3]
po TO

T

With R =287 Nm/ kg K, go=9.81 m/s2and b = - 0.0065 K /m one gets this formula for the pressure
curve in the geopotential standard atmosphere for0 < H < 11 km

o1 (I

81
> (287) 0.0065

pH 5.255
SN < > [3.1/4]

The formula 3.1/3a for the pressure altitude can be derived from equ. 3.1/3

]

Py (T,+bH) | "°
.

_Rb
e o [Po) % ] B
b | |,
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In the isothermal section of the geopotential ISA for 11 < H < 20 km applies accordingly:

d_p _ Jo dh
P RT
Py H,
dp - % dh dax = Inx
p RT X
P H‘
g " P g
H1
9o
Pu _gRTH) H,=11,0
p11

(H —H,)

2

00 m

[3.1/5]

[3.1/53]

For the pressure curve in the isothermal atmosphere is valid according to equ. 3.1/5a:

__Hgo
PHiso = Po€ 28R [3.1/6]

1

H [km]

S\

Fig.3.1/3 compares the
pressure curves of the ISA and
the isothermal atmosphere for

\

0 < H < 11 km. Both models
lead to almost identical results

\ s

sgthermal

nosphere

below 3500 m altitude (assu-
ming the initial value

Po = 1013 hPa). The simul-
taneous use of different

calibrated altimeters was ISA

therefore unproblematic at low
altitudes. However, the tempe-

\

rature error of the altimeters
had to be eliminated using
different slide rules. Fig.3.1/4

shows two examples of such
computers (I.C.A.N. stands for

sinternational Commission for
Air Navigation®, a precursor of
the ICAQ).

\

200 400
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3.1.2. Air density
3.1.2.1 Derivation of the air density curve over height p = f(H)

The flight performances calculated for the standard atmosphere and dependent on the air density can be
converted to the actual prevailing density either via the deviation of the temperature from the normal
atmosphere (i.e. ISA + At) or via the density altitude. The density altitude is the altitude that belongs to the

actual density in the standard atmosphere. Its calculation is possible on many navigation computers using a

special scale. The shape of the density curve in the standard atmosphere is subject to the following laws:

According to equ.3.1/2 and 3.1/4 applies to the curve of air density in the standard atmosphere
for 0 <H <11 km:

TH 5.255
e (2
()}
j— pH
Pv= RT,
5.255
T, Ty
pH= OTi _
H\T,
T|_I 4.255
p = po _
H <To > [3.1/7]

According to equ.3.1/5 one gets this curve of air density in the standard atmosphere for 11 < H < 20 km:

Py _e*%‘hz'm’ h, =11,000 m
Py Py =Py RT,
PH R [3.1/8]
P11
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Tu=To+bH

From equ. 3.1/7 the following formula can be derived for the density altitude for 0 < H <11 km:
1

4.255
<TH > ‘
PH = Po
To
4.255 L oEE
PH TH +bH PH 4.255 TH +bH 1, bH PH 0-235 ]
= = _ = =+ - =
Po To Po To To Po

0.235 0.935 0.235
To | Pt 1| =H ow =P e o (X :
b Po RTH TH R0.235
0.235 0235
o To | N/ ] L T | [T .
b 0235 0.235 b R po
R Po

This formula can be simplified by inserting the constants. The density altitude in meters is obtained by using
the pressure pn in N/m2 and the temperature in Kelvin:

0.235

Hp, . = 44307 - 11173 b [3.1/9]
(] T

From equ. 3.1/5 the following formula can be derived for the density altitude for 11km < H < 20 km:

g
nPH —_ % -11000) —— H,= 11000 - % In 1 ‘ pH = Rp$
P11 R T11 P "
_ R T14 PH _ Pn_
He, = 11000 - — e In g Hp = 11000 - 6334 In g o [3.1/10]

The scales of the individual computers are constructed with the help of the standard atmosphere table in
such a way that the density altitude can be read in a window after setting the temperature and pressure
values opposite each other. Fig.3.1/5 shows the following example ( equ. 3.1/9 for H = 11 km):

press. altitude 30,000 ft (pH = 30,093 Pa) temperature ISA+20° (-24.44°C = 248.71 K)

30,093

H

248.71

0.235 0.235
H
Ho = 44,307m-11,173m<—p> = 44,307 m -11,173m< > =9,822 m = 32,226 ft




Fig.3.1/5a shows the following example ( equ. 3.1/10 for 11 km < H < 20 km):

press. altitude 11,500 m (pn = 20916 Pa) temperature ISA+30° (-26.5°C = 246 K) p11 = 0.3639 kg/m3

20916

pH
= - BT - = - =12299.6
Hp[m] 11000 - 6334 In 7T, on 11000 - 6334 In (287) (246) (0.3639) m

Since the temperature gradient in the standard atmosphere changes at the altitude H = 11 km (see Fig.3.1/1),
the air pressure and density curves at this altitude have a discontinuity point. Fig. 3.1/6 shows the shape of
the density curve. The discontinuity point, however, is much less significant than shown. For the construction
of the density height scale of mechanical calculators, this special feature of the curve is no problem, since
each density (i.e. each quotient p/T) can only be allocated a single "density altitude®. For electronic calculators
which calculate the density height using the formulas 3.1/9 and 10, difficulties occur in the transition area
(altitudes around 11 km), as it is not immediately clear from the initial conditions which formula is applicable.
Therefore, density altitudes above 11 km altitude cannot be determined with all electronic calculators. The
Techstar calculator uses the formula for altitudes below 11 km over the entire altitude range. The resulting
errors are shown in Tab.3.1/2 for some computers.

H[km]
T area of effectivity of
\ \ the equ. 3.1/8
\
\\ error when applying the
192 \ equ.3.1/7 in H>11 km
11 \
N
N
S

area of effectivity of
the equ. 3.1/7

The altitude error AH, which results from the application of the formula for altitudes below 11 km at a pressure
altitude of 12 km, is only 205 m, which corresponds to 1.7 % (see Tab.3.1/1):

PA=12000 m Py, = 19330.4 N/ m2 Ty, =216.65K
’ ISA ISA
0.235 0.235
PH 19330.4 12205
H = 44307 - 11173 (—— = 44307 - 11173 |(—(— i = 12205 m — = 1.017
P[] < TH> < 216.65 > 12000 ab. 3.1/1
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Comparison of the analytically calculated density altitude with the results of different computers

pressure ft 10000 20000 30000 35000 37000 40000 50000
altitude (PA) m 3048 6096 9144 10668 11278 12192 15240
Pa| 69689 46569 30093 23843 21645 18738 11584
Tiea |K/PC| 268.34/-4.81| 248.53/-24.62| 228.71/-44.44| 218.8/-54.35 216.65/-56.5
ISAx| K | -20 +20 | 20 | +20 | 20 +20 +20 -20 20 | +20 | -20 +20
temperature
T | K | 248.34(288.34 | 228.53 | 268.53 | 208.71 |248.71 238.8 196.65 236.65 | 196.65 | 236.65
tot | °C | -24.81| +15.19| -44.62 | -4.62 | -64.44 | -24.44 -34.35 -76.5 -36.5 | -76.5 | -36.5
air density  p kg/m3 0.3479 0.3835
ft | 7800 |12200 | 17700 | 22220 |27500 [32100 37000 35000 38000 | 41900 | 48000 | -
T g| AVIAT 615
&3 % | +4 - +1.2 - - - - - - - - -
n >
23 cse-6p ft | 7500 | 12000 | 17500 |22200 |27200 [32000 - 34600 - - - -~
g.g % - -21 - - -1 - - - - - - -
oo -
82| \wa1100p | ft | 7600 |12200 | 17250 |22100 | 27200 |32000 36600 34700 37800 | 41800 47800
5% % | +1.4 - 1.3 - -1 - 1.2 - - - - -
2% CR-3 ft | 7500 | 12200 | 17500 |22200 | 27500 |32200 37000 35000 38000| 41800| 48000 | 51800
o % % -~ - - - - - - - - - - -
25 ft | 7800 | 12400 |17600 (22500 | 27700 | 32200 37200 - - | 43100 - -
S o|asa E-6B
o< % +4 +1.2 +0.7 +1.2 +0.8 - +0.5 - - +3 -
EL ft | 7800 | 12400 | 17300 | 22300 | 27500 | 32200 36800 34900 37900 | 41800| 47900 -
33| ARC-2 s
*5% Yo +4 +1.2 -1 - - - - - - - - -
©
8 8| Felsenthal | ft | 7600 |12200 |17200 | 22200 | 27500 | 32200 37000 35000 38000| 41800 48000 51800
28 PT % | +1.4 - 1.6 - - - - - - - - -
gc\: Tochstar ft 7518 |12269 |17503 | 22261 | 27490 | 32251 37246 34717 38405 42962| 49836 | 53906
i S % - - - - - - +05 - 115 | 427 | +39 | +41
@ £ | navtronic ft |7517 [12271 [17510 | 22266 | 27501 | 32259 37254 . T
(k] NAVIGATOR | o ~ = > < = < +05 not to be determined with this calculator
ft | 7497 | 12251 | 17483 | 22240| 27467 32226 |372211)/37024 2)|349973)/34767 2)| 37986 | 41825 | 47957 | 51796
analytically m | 2285 | 3734 | 5329 | 6779 | 8372 | 9822 (11285 1)/113452)] 10594 3)/ 10667 2)| 11578 | 12748 | 14617 | 15787
ga'cﬂateﬁ_t § 1) calculated with equ. 3.1/10
ensity altituae . . . .
Y calculated with equ. 3.1/9 2) determined by linear interpolation  ¢5jcyjated with equ. 3.1/10
in the ISA
3) calculated with equ. 3.1/9

3.1.2.2 Calculator for the consideration of the density altitude

To calculate the influence of air density on flight performance, so-called DENSsity ALTitude performance
computers were developed, which specify the factors with which the parameters

- vertical speed or rate of climb (ROC)
- take off distance

are to be multiplied if the air density (i.e. the density altitude) deviates from the values of the standard
atmosphere. Fig.3.1/7 shows such a calculator and Fig. 3.1/8 shows an enlarged section of it.

Window for
setting the
temperature in °F

Window for
reading the
factors for the
Window for RATE OF CLIMB
reading the
factors for the
TAKE OFF
DISTANCE



The setting selected here provides at 10,000 ft (approx. 3000 m) and +20°F (-7°C) the factor 0.25 for the
reduction of the rate of climb compared to the rate under ISA conditions for aircraft with variable pitch
propellers. So the rate of climb decreases to a quarter. These factors are shown in Table 3.1/3. The
various types of DENALT computers have the same figures, i.e. they probably come from one source.
The accuracy of these factors is

checked using an example. For constant speed propeller airplanes (variable pitch)
this purpose, the vertical speed Pressure Altitude [ft]
of a variant of the single-engine [°C] [°F] | -2000 0 2000 4000 6000 8000 10000
aircraft Jak-18 is calculated for
the altitudes 0 and 3 km, for the o a0 %‘%g 8'32 8'23
flight mass of 1000 kg and for 29 -20 089 074 0.60
ISA conditions. The necessary 23 -10 1.00 0.84 0.70 0.55
curves for P, (power available) ]g (1)0 8-33 8-‘;2 8-2? 8-g§
. - + . 5 . .
and Py (POVYGI’ required ) are -7 +20 1.00 0.87 0.72 0.58 0.25] 8
shown in Fig.3.1/9. Doubts about 1 +30 0.97 083 0.68 054 022 |
the authenticity of these curves +5  +40 0.93 078 0.64 049 0.18 §
are out of the question, as one +}g +gg 0.99 g'gg 8;51-’ 8‘2} 8'% 5
could well design an aircraft with 121 :70 0:95 0:81 0:68 0._54 0._22 -
these characteristics. For the +27 +80 091 078 064 050 0.18
rate of climb w in the altitudes +g§ +$1980 100 g-gé 8-;;‘ 8-2; g-gz
+ + . . . . .
0 m and 3000 m and for the +43  +110| 0.95 0.81 0.68 054 022 0.13
factor waooo / Wo One gets: +49 +120| 093 0.78 0.64 0.50 0.20
Tab. 3.1/
P
we Pa-Pr (kW] /
mg | H=0 P /¢
80 V4
7 PA I1SA
Wo = 63,600 - 28,600 | Nm | _ 3.56 m/s _ / 7
1000 x9.81 | sN |-~ 636 y ik
. | 1/
48,400 - 32,400 | Nm 48.4
W3000 =——2 2 =1.63 m/s !
1000 x 9.81 { sN ] ol 1/// H = 3000 m
324 e /%
Wao00  1.63 _ 0.458 28.6
wo 356 20
Vinax ROC 140Vmax roG 180 220 —_— [km/h] V1as
Fig.3.1/9

DENALT computers provide a factor of 0.25 for these conditions (see Tab.3.1/3). An even greater
difference results if one assumes that the otherwise unchanged aircraft is equipped with a more
powerful engine, so that the available power can be multiplied by 1.5:
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o~ 1:5%63,600-28600 [N qu 6.8 m/s
1000 x 9.81 S
_ 1.5x48,400-32,400 [ Nm | _
W3000 = 7000 x 9.81 { SN J =4.1m/s
W3000 41
wo - 68 - 0603

The reduction "PERCENT ROC", which should remain the same (DENALT computers only make a
difference with regard to the type of propeller), becomes even bigger. This makes these factors somewhat
questionable; after all, it has to be said that they are deviations to the safe side.

3.1.3. Temperature measurement

3.1.3.1. Definitions

The temperature rise (temperature increase due to internal friction and compressibility of the air) causes the
temperature measured at the aircraft is falsified depending on the airspeed. A classification is made between
the following three temperatures:

RAT ram air temperature = indicated temperature

Because of the position of the thermometer (installation error) and the
temperature rise At incorrect measured temperature value.

Elimination of the "installation error". In modern aircraft, this
error is completely eliminated by the flight-data computer
(temperature recovery coefficient ct = 1). On older instruments,
the installation error caused by heat being lost (flowing into the
airframe on the way from the stagnation point to the sensor)
can be up to 30% (ct = 0.7).

TAT total air temperature
Temperature falsified by the temperature rise.

Elimination of the temperature rise At. In modern airplanes
> the total- and the static temperature are constantly displayed.
SAT

outer air temperature (C.0.A.T))

True temperature of the ambient air of the aircraft. Fig.3.1/1
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3.1.3.2. Temperature rise

These forms of energy can be contained in a flowing air mass:

2
Kinetic energy: mv
2

p Nm
Pressureenergy: m R T or m— R =287 o K

o g
Potential energy: m g h

715 Nm
. c= ERALLLE

Thermal energy: mcT kg K

The sum of these energies must be constant (Bernoulli's theorem):

m v2

+mMRT +mgh +mcT =const.

With the assumption that the mass m and the height h are also constant, one obtains this formula:

2
(Vims)

2
+ 287 Tg + 715 Ty = const. (Vims)™ + 2000 Ty = const. | [3.1/11]

In exceptional cases of low velocities, the flow may be considered incompressible, so that density, height,
mass and temperature are constant and the Bernoulli formula is simplified as follows:

p V2

5= *P = const. [3.1/12]
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p = static pressure



When the air particles hit an obstacle, their speed decreases. The associated decrease in kinetic energy
must lead to an increase in pressure and thermal energy.

stagnation point (speed = 0, temperature TAT)

free flow (speed = v, temperature SAT) —=(

The temperature increase At in a stream that is decelerated at an obstacle to zero can be calculated by
equating the equ.3.1/11 for the free flow and for the stagnation point:

2
(Vimss) + 2000 Tsarg = 0+ 2000 Trark

2
(Vim/s) V2 = M2 22 sound speed a = V 14RT

Tratig = +TsATK]

2000 a=20 \/ Tsar apms) = 20.04 VTSAT[K]

Vms2 = M2 400 Tsar

%
Mach number M = o
a
M2 400 Tsar
Tty = —— +TsATK
2000
Trarig = Tsarg (1 + 0.2 M2) [3.1/13]

The temperature rise (temperature increase at the stagnation point) is equal to the difference between the
total air temperature and the static air temperature:

At = Tar - Tsar

2
V. [
TTAT = TSAT (1 + 0.2 M2) M2 = aTgs a'[m/s]z 20 TSAT
v2 2
E— TTAT = TSAT (1 + 0.2 ﬁ ) M2 = VTAS
2
e Ty = V1as
tar= Tgar + 0.2 200
2
MK = Trama - Toarga= o228 | [3.1/14]
TATIK] SAT[K] 2000 .
For other speed dimensions these relations are derived:
V2 V2 2
_  Vias [ki] _ _V1as [km/h] _
At [K] = 7600 At[K] = W At [K] = 0.0000384 Vixs kmh]
[3.1/15] [3.1/16] [3.1/17]
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The temperature rise can be calculated with flight computers in the following way:

1. Calculation of the temperature rise according to Huber

After equ.3.1/15 one gets this result for the example vas = 300 kt and ct = 1 (see Fig.3.1/12):

300°

2600 - 11.8

At =

RE RISE (.
?\P;(U C (e

Fig.3.1/12

2.Calculation of the temperature rise with computers of the type SN-3m

The slide rule SN-3m (an NL copy) has an additional scale for calculating the temperature rise. This scale,
consisting of the temperature recovery coefficients ct equal to .5, .6, .7, .8, .9 and 1, was inserted into the
tangent scale in such a way that the temperature rise in degrees Celsius can be read directly from it.
For a true airspeed of 720 km/h, the equ.3.1/17 will give a temperature rise of 20°C (valid for ct = 1).

At = 0.0000384 vras? = 0.0000384 x 7202 = 19.9°

The calculation for the selected example consists of the following settings (see Fig.3.1/13):

- The cursor is set to vias = 720 km/h on the v:100 scale.

- The slider is moved so that the mark 40°/140° of the sine scale is below the cursor line.

- Under the red mark 1 on the tangent scale, one reads a temperature rise of 20°C (applies to
cr = 1; for ct = 0.8, for example, one gets 16°).

R

111 it | N | |
0S¢ (km KATY ZAKRETU MWMHHUHU&M | | 1|:UH ,‘i‘:;
4 6 20 30 0 50, 60 [f0 80 90 10
T TT"T‘ﬂir"rm_* PR B e L AR BRRRERLAN (LI AR RO
| AN S S A S I A W W W W WU BRRRENHR 1T ]I;l’llh‘] 11111.1%1 ||1HLE—J .n;llul
7 20 30 G4 [0 A|70 80[%0is 2

g s e o 168° 160° ! we e e e

smusy -+

e R £ SARA ‘ahbii A i i
¥ For ¢ vogert':s s w0 2w | @l 50°
]lLLl i Pl 1 TTUFI- IIT L‘f‘""”‘l“.1|l||-11|r1|1[||r1r|1H|1111li11
Lyu Rk WEEREERREISS eI llglugnt'}nllgmu‘!’lﬁ

4 15 20 30 po 50] 60 [f0 80
z ET C§CiWYSOK0$CI t 5 ‘ 6 1| 8| 9  w
NN AN PO NP ORI N RN O [ OO O ) Y Y NN NS SRR RN RRA RN R [RRRRARRRE RRRRRRRRY (RARRRRLARRRARRAIN

|
16° 20° T Fig.3.1/13
720 km/h
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As the computer setting in Fig.3.1/14 shows, the square of the true air speed is multiplied by 0.0000384 or
divided by 26050 in order to find the temperature rise of 20°C for cr = 1 and 18°C for ct = 0.9

140° )
1 sin
40°
b— 26.05 —
9 1
1 1 tan
18 20 51.8
- v:100 Fig.3.1/14

3. Calculation of temperature rise with AVIAT computers and computers of type NL

Fig.3.1/15 shows the "TEMPERATURE CORRECTION" scale of an AVIAT computer. Neither the calculator
nor the manual contains information about the "temperature recovery coefficient" ctr on which these
scales are based. Comparisons with analytically calculated values suggest a cr- value of about 0.7

(see Tab. 3.1/4).
\ (W SR R < -
i 40 g ‘
\ 3\0\ \ *u".,-,“v.'u.‘\fu‘n;:;:,; / 500 y:

!
””"J"f
gl /

\ ! 700
A\ W 600 ot g 90/5”’;’;;'
P O \\\\\\\\ "QQ P {0 Isl I ~20 ’07, I/
"'Q\\\\g ‘\\ f:/',”"fs 001
/
. I\ \ 3 Q“P. CORR- ’, ? ,a/
A ~ 30 2a

Fig.3.1/16 shows the At - scale of a computer of type NL. With these calculators sometimes the

measuring element is named, but no information about its cr-value is given. This should also be 0.7
(see Tab.3.1/4).

Vi 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
L e by b b b g g
T T T T T T ]

At°

10 2° 3° 7°8° 10P11°13°  17°19°21°2426°29° 32°35°38° 42° 46° 51°
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Comparison of different computers regarding the TEMPERATURE RISE calculation

@190 . 200 300 400 500 . 600 , 700 800 , 900 1000 1100 1200 . 1300 , 1400 [km/h]

@5‘0"“190““150‘”‘200”‘2‘50”.‘309"3‘5QH4OQH45QH‘5OQ"5‘50“‘600‘“‘5‘59”700”‘7‘50‘“[kt]

@ 0° 10 2 4° 7° 8 10° 11° 13° 15° 17° 19° 21° 24° 26° 29° 32° 35° 38° 40° 42° 46° 51°
@ i° 2° 4° 7° 8 10°11° 13° [15° 17° 19° 21°| 24° 26° 29° 32° 35° 38° 42° |46° 51°
@ ‘ & 7° 8 10° 11° 13° 15° 17° 19° 219 24° 26° 29° 31P 34° 37° 40° 43°
@ 2 4 69 810°12°14°| 18" 22°25° |20° 33° 37° 41° 45° 50° 54° 59° 64° 70°
16° 20°
@ 45 10| 18, 20{ 25 30°| 357 40° 457 S50° | 60° | 707 807
@ 5.3° 21.0°

32.9° 64.6°

Explanation:

true airspeed [km/h]
true airspeed [NM/h]
scale At° of the computers of the NL - series

scale At° or TEMP. CORR of duplicates of the NL - computers and of
AVIAT-Computers (except AVIATJET)

Chinese computers (deviations from the scales ¢ and d only at high speeds)
scale At° of the computers NL - 10 U and NRK - 2

computers working with the Huber patent (clearly labelled with ¢, = 1),
IWA 11092 and NL-deriative SN-3m (Fig.3.1/13)

® @@ @0E@®

the values of this scale were calculated according to equ.3.1/15
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3.1.4. Flight envelope

In Fig.3.1/17 the hatched area shows the flight envelope (range of possible speeds and flight altitudes),
which is limited by

- the minimum dynamic pressure required for lift (vcas min),

- the maximum permissible dynamic pressure (max. operating vcas) for reasons of structural

strength, and

- the maximum Mach number permissible for aerodynamic reasons (max. operating M).
At the intersection of the lines of the maximum permissible dynamic pressure (vcas) and the maximum
permissible Mach number, the greatest possible true airspeed viasmax is determined. The corresponding
altitude is called crossover altitude. The intersection of the lines of the minimum dynamic pressure
(vcasmin) and the max. operating Mach number determines the aerodynamic ceiling, the theoretically
highest possible altitude (in the slang called coffin corner).

Hi ___ _  aerodynamicceiing
[km]
i

crossover altitude

se}
9 Fig.3.1/1
Viasmax " Vras
This formula applies to the true -1 4! an sound speed
airspeed in the subsonic compressible zai| q X in alt. H
flow (see John D. Anderson ,Introduc- Vs = | %~ 1 oy T 1) -1 o static pressure [3.1/18]
tion to flight): in alt. H

g dynamic pressure

With vras = a M this relation for the k-1
Mach number can be derived from _ 2 q ) 3.1/19
equ. 3.1/18: M= %= < [ +1> 1 [ )
k-1 k-1

2

For the pressure ph is obtained: M = K?1 <?) +1) -1 — 1+ Ké v’ <?) + 1>
H H
94 o (14027 o py= [3.1/20]
Ph (140.2M%)° - 1

After inserting the minimum dynamic pressure q (Vcas min) and the critical Mach number Mrit into this formula,
the pressure pn at the aerodynamic ceiling is obtained. After inserting the maximum dynamic pressure q
(vcas max) @and the maximum operating Mach number (Mwmo) into this formula, the pressure pn at the crossover
altitude is obtained. Note that these altitudes are not temperature-dependent.

The maximum true air speed that can be achieved by respecting vcasmax (that means maximum dynamic
pressure g) and maximum operating Mach number (Mwmo) is then:

_ (T cr.ovALT. - ISA-temperature in
Vinsmo= 8@ Myo= Myo|[14 R Torovar  [3.1/21] the crossover altitude)
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According to equ.3.1/19, the Mach number is a function of the static pressure pn (and thus the altitude) and
the dynamic pressure g (and thus the vcas).

The setting of a computer of type

CR using the Huber method is

described by an example where

the vcas is 300 kt and the pressure

altitude 30,000 ft and where the

Mach number M = 0.79 is deter-

mined (see Fig. 3.1/18). In the

logarithmic scales for the dynamic

pressure (vcas) and the static

pressure (altitude), the quotient

a/pH is calculated, to each of

which a Mach number belongs.

The same setting of the calculator

should be used if the crossover 300 kt
altitude or the aerodynamic ceiling 30,000 ft
is to be calculated from vcas and

Mach number.

The calculation of the Mach number with Huber computers is also possible via the true temperature tsar
and the true airspeed vias. For an example where the true air speed vias = 450 kt (232 m/s) and the true
temperature tsar = - 61°C (212 K), the Mach number M = 0.795 is obtained.

M = Vs _ VTAS 232

a - - 1
J & R Tsar 144287 x 212

= 0.795

In the interest of a more exact and simpler calculation, the Huber computer works with the indicated
temperature trar. The temperature rise at vias = 450 kt is At = 27°C (according to equation 3.1/15). An
accurate thermometer (ct = 1) would therefore indicate - 34°C (- 61° + 27° = - 34°). Assuming a temperature
recovery coefficient of cr = 0.8, only 21° (27 x 0.8 = 21) of the temperature rise would be displayed, i.e. the
indicated temperature trar is - 40°C (-61 + 21). Fig. 3.1/19 and 3.1/20 show the settings and results in two
such computers for this example.

Vi = 450 kt
t.= -40°C
Voas = 450 kt

M=0.8 M =0.79

t,= -40°C

At = 26.5° P,
(c.=1) At =
! (e, =1




3.2. The systematic errors of barometric altimeters and their correction

3.2.1.General

Barometric altimeters always display the altitude value in meters or feet standardized to the measured
pressure in the standard atmosphere. They are therefore not capable to determine the height above the
relief and thus the obstacle clearance. The unavoidable deviations from the ISA result in further systematic
errors. The pressure at altitude depends on the pressure at ground as well as on the temperature at ground
and at altitude (see equ.3.1/4 and 5). The more the air temperature on the ground and the more the mean
layer temperature deviate from the standard value, the greater the systematic errors.

3.2.2. Correcting the altimeter indication for the temperature error
The temperature error can only be eliminated if the true temperature curve is known. This

formula is derived from the Law of Laplace (see chapter 3.1.1):

Jo dh
RT

dp
p

If the constant mean layer temperature Tn is used for T, integration is simplified and this result is
obtained:

- °
P RT.,
Py H
d __ 9 |4
P RT,
pO
P g
Inp,, -Inp,= %[H]H —>|n7H=*F
m 0 po m
RT p
H= - — ™y "
g Py
R
H true = - Mact. |n pH Higo= - — TISA Jp M
o P,
H true Tm T
act m
= ' = | Hyye= Hipgic——2 3.2/1
H indic. Tm ISA true indic. Tm ISA [ ]
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Example 1 (temperature lower than in ISA at normal gradient - 6.5 K/km):

With an altimeter indication from Hingic. = 2000 m in an atmosphere whose temperature has the normal
gradient of - 6.5 K per km altitude, but which is 30 K below the ISA (i.e. on the ground -15°C instead of +15°C
and at 2 km altitude -28°C instead of +2°C), then according to equ.3.2/1 a corrected altitude of Hiue = 1786 m
results:

H [km]
2 -

Tm
act. 251.5
H true — H indic. T = 2000 mm =0.893 x2000 m =1786 m

msA

| 1
245 258 275 288 TIK]
-28 -15 42 +15 t[°C1
-

\—v_/
=251,5

T -
MISA-30 2815

Tmisa
On computers with logarithmic scales, this correction is realized by multiplying the indicated altitude by a factor,
in this case 0.893. On a computer of type AVIAT the setting according to Fig.3.2/2 is required for example 1 and
the exact result Hiwue = 1786 m is obtained. In this figure the calculation scheme for the true altitude according to
equ.3.2/1 using logarithmic scales is easily visible.

0.893 | 1786

1| 2000

8-9-3

. PRESS.ALT. km

2
/ C.OAT °C

On computers of type NL, for which the temperature at zero altitude (to) must also be known, the setting
according to Fig.3.2/3 is required for example 1 and the exact result Hiue = 1786 m is also obtained.

tH + tO
43 1.5

ﬁ \

The correction of altitudes below 11 km is carried out on computers of type NL-10 using separate logarithmic
scales according to the formula derived from equ.3.2/1:

ro 1786
ro

indic Tm act |Og Htrue _ IOg indic

+ |Og Tm act
Tmisa Trmisa

Htrue =

In Fig.3.2/4 the calculation method is shown schematically. The scale of the medium absolute temperature
Tmact Was labeled to + tH for easier handling. This is possible if the division of the scale is halved, since with an
increase of ty or to by 2°C the mean layer temperature Tm only increases by one degree.
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true

log T,

m act

to+ty H
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|og% Fig.3.2/4

The correction of altitudes over 11 km is done with computers of type NL-10 using separate logarithmic
scales according to the formula derived from equ.3.2/1. In Fig.3.2/5 the calculation method is shown
schematically.

Hindic - 11 k Hindic -11 k
Hirue-11 km = indo m Tact |Og Htue -11 km = |Ogmdlc—m + |Og Tact

216.5 216.5

log Htrue -11 km

log T

act

t
H Hire
[NERRRRERRRRRT L L1

Y ™
indic .
[ a 11 km Fig.3.2/5
log indic
216.5

Both types of computers achieve incorrect results if the actual temperature curve does not have the
same difference to the ISA in all altitudes due to inversions. From the direct comparison of the errors of
the two computer types (see example 2 and 3 and Fig. 3.2/6 and 7) no conclusions can be made
regarding the accuracy of the two methods. To determine the indicated altitude, the altimeter must be
set to QNH.

Example 2: H [km]
2 Hindic. =2000m
Hyue =2062m
H,, =2100m
Hae  =2000m
258 275 288 [K]

-15 +2  +15 [°C]

Example 3: H[km]
2 Hindic. =2000m
Htrue =1893 m
Hegg =1915m
Hy  =1895m

258 275 288 [K]
-15 +2 415 [°C]
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3.2.3.Correcting the altimeter indication by the air pressure error

Using the adjusting knob on the altimeter, the pressure error is eliminated by setting the air pressure
measured on the ground (QFE or QNH). When the QFE is set, the altimeter at the touchdown point
shows zero altitude, when the QNH is set, elevation. Exact conversion of the QFE into QNH is only
possible by means of an electronic computer.

The calculation of the pressure decrease with the altitude over a constant factor is only possible as a
first approximation and for low elevations. According to equ.3.1/1 applies:

dh 1

dp P9

With go = 9.81 m/s2 and po = 1.225 kg/m3 , for the height zero applies:

dh m ft
“ap = 8%2pg = 273 1y
With p1ooo = 1.111 kg/m3 one gets in 1000 ft elevation:
dh m ft
“ap - 1 mpa T 30 ppy

However, these values are only suitable for rough calculations of the pressure decrease with elevation. An
exact formula for the calculation of the QFE from the QNH can be derived from equ.3.1/4:

pH <TH
Po To

The QFE corresponds to the pressure pn and the QNH to the pressure po, so that this formula results:

5.255

5.255

PQFE = PQNH <—Tele"‘>
To
ISA

The ISA temperature gradient - 6.5°/km is used to calculate the temperature Teev. and this formula is
obtained:

PaFe = . Heevin o [3.2/4]
PanH 145366
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3.3. The errors of airspeed indicators and their correction

3.3.1. Airspeed definitions

Airspeed indicators are measuring instruments of dynamic pressure which have instrumental
errors. If the indication of the instrument (airspeed indicator reading - ASIR) has been corrected
for its instrument error by means of the error table of the corresponding instrument, the indicated
airspeed (IAS) is obtained. The dynamic pressure sensors are dependent on the flow around
them, which leads to the position error. After correcting the IAS for this error using the aircraft
manufacturer's table, the calibrated airspeed CAS (also called rectified airspeed RAS) is obtained.
For altitudes above zero, the determination of the TAS from the CAS shall take into account the
systematic error resulting from the conversion of the dynamic pressure with the standard value of
air density at sea level po = 1.225 kg/m3. This error occurs at any altitude above zero (at 12 km
altitude the TAS is twice as large as the CAS). At higher speeds the air may no longer be con-
sidered as an incompressible medium. The compression of the air in front of the pitot tube creates
a higher dynamic pressure which results in too high speed values. Therefore, at high speeds, the
remaining error due to compressibility must also be taken into account, since when calibrating the
airspeed indicator, this error is eliminated by suitable construction of the indicator for the altitude
zero and for normal atmospheric conditions so that a remaining error exists. After correcting the
CAS for the remaining error one gets the EAS (equivalent airspeed). At the altitude zero is in the
standard atmosphere CAS = EAS = TAS.

ASIR | airspeed indicator reading

Already corrected for the compressibility error in the
altitude zero for ISA conditions by means of construction.
Elimination of the "instrument error® area of
—» with the help of the correction table increased air
of the indicator. i density
A ASE———————
——
— =
N I . girectio” ‘0‘ flo f‘
IAS | indicated airspeed g‘cr:‘gg:\%gon error) total static
’()criiﬁzlrjrr]?c pressure p
pressure q
S . . . + static
Elimination of the ,installation (position) pressure p)
., error®of the pitot tube with the help of
the corresponding table of the aircraft
manufacturer.
\4
CAS| calibrated airspeed (also called RAS - rectified airspeed)
—— > Elimination of the remaining compressibility error.
A\ 4
EAS | equivalent airspeed
—» Elimination of the systematic error due to px 2 po
A 4
TAS | true airspeed Fig.3.3/1
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According to Bernoulli, for the incompressible flow, p v2
the sum of dynamic pressure q and static pressure p > TP =a+p= const.
is constant (see equ.3.1/12):

Analogous to the formula 3.1/18 for the v1as, this relationship results for the vcas for the subsonic
compressible flow:

Vv =
CAS k-1 po

1
> K
28, <q +1> 1 [3.3/1]
From this, this formula for dynamic pressure q can be derived:

Veas (k-1) -
q=p, || ————+ 1) -1 [3.3/2]

At low CAS (e.g. 100 kt = 51.44 m/s), po = 1.225 kg/m3 and po = 101325 N/m2 as well as a, = 340 m/s with
both dynamic pressure formulae result, as expected, in almost the same dynamic pressure values:

2

3.5
2
q= 1:225 (51.44) _ 4551 Njm? q= 101325 <ﬁ +1> -1|= 1633 N/m?

2 5 (340)2

At a CAS of 600 km/h (166.7 m/s), the simple formula delivers a dynamic pressure of 17020 N/m2, while the
exact formula delivers a pressure of 18099 N/m2

3.5

2 2
q= 1:225 (166.7) _ 17000 N/m? q= 101325 <L72 +1> -1 |=18099 N/m?
2 5 (340)

Both the systematic error (due to pH # po ) and the remaining error due to compressibility are eliminated
and the error-free vias is found if the formula after 3.1/18 is applied:

The speeds v1as and veas differ by the systematic error so that applies to veas:

p
Veas = Vras pH [3.3/3]
[e]
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3.3.2. Sound speed and Mach number

The formula for the sound speed is: a=-/kx S—H [3.3/4]
H

The formula can be brought into this form with the equ.3.1/2: a= K'R'TH [3.3/3]

According to equ. 3.3/3 and 3.1/2 applies:

Do p 0 PH Po
v =v = — pn = Po =
me =Y 00, | PT TR RTH T R
It therefore follows: \\//TA = [PoTu [3.3/6]
EAS Py T,

Most navigation computers have a special scale for calculating the vias from veas, TH and pH using equ.
3.3/6, which can be used to calculate the sound speed. Since this is only dependent on the temperature, a
value x must be searched in the pressure scale, opposite which the temperature is set, so that the sound
speed can be read opposite the speed value 1000. With the help of equ.3.3/6 this pressure altitude x can
be calculated (since the sound speed is to be calculated in km/h, 3.6 a must be used):

36a _ | P, Ty _ ]
1000 | x T a=yR 14T,

_ P, 1000°  (101325) 1000°
T,1.4R 36% 36% (288)1.4 (287)

= 67563 N/m2

With the help of equ.3.1/3a the corresponding altitude can be calculated from the pressure:

088 67563 \0-1903
Hp, = 1— =32
P 0.0065{ <1o1325> 3288 m

For a temperature (SAT) of e.g. t = - 20°C (253 K) the sound speed a = 318.75 m/s (= 1147.5 km/h = 619.6 kt) is
obtained according to equ.3.3/5. For this example the slide rule type NL must be set according to Fig.3.3/2 (not
all computers of this type have the mark M - but newer instruction manuals mention a mark at 3.25 km). To
obtain the speed of sound in NM/h, a second mark at 1.25 km can be found in the same way.

VTAS

The Mach number is defined as: M = 3

Fig.3.3/2 also shows the possibility of Mach number calculations. Since the mark for the sound speed was
chosen at 1000 the multiplication with the Mach number in the logarithmic speed scale is simply possible.
As an example it is shown that at the sound speed a = 1147 km/h (619 kt) and a Mach number of M =0.8 a
vtas of 917 km/h (495 kt) results. Conversely, the Mach number can of course also be determined from the
true airspeed and the sound speed.

917 1147

o |
tH - -60-3‘ 9+30 /\/ 900 1090 | 1100 i 1290
T ‘ T \‘\ \‘ - \‘ -
800 900 1000 1100 "
ERE

km/h Mkl



C.O.AT.-20°C

Most circular computers
have a window in which
a MACH-INDEX is
placed opposite the
temperature (SAT) in

order to be able to read MACH
; NO
at the mark 10 in the INDEX

logarithmic scale the

speed of sound.

Fig.3.3/3 shows the a=619kt
setting of the same

example on a computer

of type E-6B.

Vypg = 495 kt

M=08 Fig.3.3/3

The calculation of the Mach number from calibrated speed and pressure altitude according to Huber
must be carried out in different ways due to the effect of the compressibility of the air. A differentiation is
made between these flow conditions on a pitot tube:

subsonic

. supersonic flow
compressible flow

incompressible flow

M<0,4 04<M<1 M=1
/
= Vm<<a - V°°< a EVm> a:é;t
—\

increased air density |,
at stagnation point [ shock wave

—<
—

Voo

) \

Incompressible flow

In the incompressible flow the equation for dynamic pressure is valid q = 2 V2
VTAS . PH
For the Mach number M= —— you get with pn = and a= kRT
a RTH
29 2q _ po po
VCAs = 0o VTAS = oH Vias = Vcas on — M= vcas W [3.3/8]

The Mach number is therefore a function of the dynamic pressure (vcas) and the pressure altitude (pr). The
Mach number M = 0.25 results for the following example:

pressure altitude PA 25400 ft (7742 m)
pressure pH 36906 N/m2
vcas 100 kt (51.4 m/s)
. I po 1.225
Analytical solution: M = = 5147\ —==— =0,2502
Yo Ve on (1.4) 36906
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Subsonic compressible flow

In the compressible subsonic flow, equ. 3.1/19 must be applied for the Mach number M:

K-1
2 q *
= —+1) -
M <1 <PH + > 1

The Mach number M = 0.8 results for the following example:
pressure altitude PA 30600 ft (9327 m)

pressure pH 29285 N/m2
vcas 300 kt (154.3 m/s)

Analytical solution:

For the dynamic pressure q equ.3.3/2 applies:

o 35

2 K-1
K-1 2
q=p, Vs 01 U 4 qoqo1a2s | (15437 L4} 4] 2 15375 N2
20 5 x 340°

For the Mach number, it results: M= /5 < -1| =0.80

15375 0.266
20285 *

The fact that the formulas of the compressible flow are also applicable for the incompressible is proven by
this recalculation of the example used above:

51.4°

5 x 3407

35 0.286
36905 1>

q=101325 < +1> -1| = 1630 N/m? M= /5 <1630 -1 | =0.2493

Solution by means of computer CR:
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Supersonic flow

In the supersonic flow the Rayleigh pitot tube formula equ.3.3/9 applies:

K

(k-1) I’

(k +12M? 1-x+2xkM?

a_ -1 [3.3/9]
Po 4K M2-2(k-1) | k41
For M = 1.5 one gets:
3.5
2 2 - 2
aq _ 2.4%2x1.5 1-14+2x14x15 1 =241
Pu 4x1.4x152-0.8 2.4

Using equ.3.3/19 valid for M <1 would lead to the following result (error 3.2 %):

0,286
<2.42+ 1> -1

k-1 !
q K
— +1 -

This discrepancy confirms that equation 3.3/19 is not applicable to Mach numbers M > 1. Since the Mach
number scale of the Huber calculators reaches up to M = 1.8, it can be assumed that it is based on
equ. 3.3/9 (see Fig. 3.3/5a).

2

K-1

M = = 5 =1.45
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3.3.3. The systematic error of airspeed indicators

3.3.3.1. General

The systematic error of the airspeed indicator is eliminated in navigation computers by multiplication with
a correction factor f in a logarithmic speed scale. As a result of the decrease in air density, the error,
which is dependent on pressure pn and temperature Th, occurs at all altitudes above zero. However, the
indication of the temperature is falsified as a result of the temperature rise, which itself depends on the
true airspeed. Most computers therefore require at least two operations. The first one uses an estimated
vtas to determine an approximate temperature. This is then used to correct the vcas. With the now calcu-
lated vias a nearly exact temperature rise can be found and with this an even more exact true airspeed
can be determined. This is not necessary for computers that use the Huber method, since it works with
the indicated temperature. The altitude correction scale is constructed by considering the temperature as
constant and the temperature correction scale is constructed by considering the altitude as constant.

Influence of pressure (temperature is considered constant):

According to equ.3.3/8 applies: Vs = 29
Pu v po O = Py
. TAS = VEAS a H ™ RT,
1/ 29
Veas = p70
p. RT
VTAS= VEAS o H
Py

For the altitudes 0 and 10 km applies then:

o.RT
o o Vias10= Vg
Po P1o

Po R Ty

Viaso = Veag

From T, p,and R = const. follows:
Vias 10 Po Po
v =\ Vias10 = Viaso || ——
TAS 0 P10 P1o
5 P,= 101325 N/ m2
| Bo |
fo=1— Py = 26436 N/m2 fiowm = 101325 =1.957
P1o v v 26436

™wso — VEas

For the influence of 10 km altitude one receives at constant
temperature:

Vias10=1.957 v

In the same way, the factor f s km = 1.369 is found for the point 5 km in the altitude scale.
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Fig.3.3/6 illustrates in a detail of a NL- calculator how in the logarithmic speed scale the veas is multiplied
by a factor of 1.957 when the pressure altitude is increased by 10 km and by a factor of 1.369 when the
pressure altitude is increased by 5 km.

Influence of temperature (pressure is considered constant):

po R TH
Pu

Viag = Veas

From p,,, P, and R = const. follows:

Vias= Veas | T,

For the temperatures +15°C (288 K) and - 60°C (213 K) applies then:

V.

ms+15 = Veag 288 Vias -60 = Veas 213

For the influence of 75° temperature one receives at constant pressure:
Vias 415 288
v =1 &332~ = 1.163
VTAS -60 21 3

3.3.3.2. Correction of the airspeed indicators for the systematic error with different
computers

3.3.3.2.1. Computer DR-2

Fig.3.3/7 illustrates in a detail of a DR-2 calculator how, in the logarithmic speed scale, the veas is
multiplied by a factor of 1.16 when the temperature is increased by 75°C and by a factor of 1.96 when the
altitude is increased by 10 km.
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3.3.3.2.2. Computer Junkers ADJUVATOR

The correction of the veas for the systematic error
can also be done via diagrams, which are used with
the ADJUVATOR computer. This example is shown
in the figures:

VEAS 420 km/h
pressure altitude PA 6 km
C.OAT 0°C

Analytically was calculated the air density according
to equ. 3.1/2, the density altitude according to equ.
3.1/10 and the v1as according to equ. 3.3/18:

air density p 0.602 kg/ms3
density altitude DA 6.825 km
VTAS 599.1 km/h

The calculation starts with the determination of the air
density resp. the density altitude with the help of
Fig.3.3/9 (at the intersection of the temperature line
0°C with the line of the pressure altitude 6 km point A
is found). At the intersection of the vertical line with
the speed line 420 km/h in Fig.3.3/8 the true airspeed
vias = 600 km/h is determined.

CAS
[km/h]

500

450

420] |

400

350

300

COAT

+20

+40

NN\ N\
\\ \\ \<)’o \\
NN
6‘64,0
\\\\ 0%\\ \\\
N \\
NN
\\
5 6,825 [km] 10DA
Xl
e
F ANV
RNEC \7
o[\ N\ VBN
© \ANA
\ NANRYA
A
YA

In the computer (see Fig.3.3/10) both diagrams are shown in a circle. The application or reading is

analogous to the use of the diagrams. For easier handling the computer has a rotatable pointer with

altitude scale.

pointer

Note:

The computer provides no means to consider the error due to compressibility of the air. For example, at
a vcas = 550 km/h and a pressure altitude of 8 km (both values for which the computer is intended), this
already leads to an error of + 25 km/h. A further source of error is the difficulty in determining the exact

temperature, since the temperature rise is a function of the still unknown vras.
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3.3.3.2.3. Circular computer

Fig.3.3/11 shows the following example:

VEAS 100 kt

pressure altitude 10 km = 32808 ft
C.OAT - 50°C

VTAS 172.8 kt

density altitude 9988 m = 32769 ft

18

17

10 11

3.3.3.2.4. Airspeed indicator with correction scale

Fig.3.3/12 shows the following example:

Vias
pressure altitude
C.OAT

V1AS

160 m.p.h.
20000 ft
+10°C

233.9 m.p.h.
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3.3.3.2.5. Computer using the procedure according to Huber

The procedure in which the true airspeed can be calculated with the indicated temperature is explained
using a type CR calculator in the following example:

pressure altitude 10000 ft
VCAS 356 kt
temperature trar 0°C (273 K)
temp. recovery coeff. cr 0.8
Mach number*) 0.637
VTAS 397.5 kt
T
According to equ.3.1/13 applies: T = TAT 273 =2525K

SAT

(1+02M?% (1+0.2x0.6372)

The temperature rise At is therefore: At = Trar -Tsar = 273 - 252.5 = 20.5°C

At a cr value of 0.8, only 16.4°C of the temperature rise is displayed (20.5 x 0.8). The actual temperature
Tsar is therefore 4.1°C higher, i.e. 256.6 K (252.5 + 4.1). This results in a sound speed of 321.1 m/s:

a=1k R T, = 14x287x256.6 =321.1 m/s
The vras is achieved by the formula vias =a M = 321.1 x 0.637 = 204.5 m/s = 397.5 kt

Fig.3.3/13 shows the calculation of this example.

After PA = 10,000 ft opposite CAS = 356 kt has been set, the Mach number M = 0.64 and the
temperature rise for ct = 1 of 20.5°C are indicated. Then place the line ct = 0.8 of the rotatable pointer
over the intersection of the line 0°C (INDICATED TEMPERATURE) with the spiral line and then read the
vias = 399 kt below.

Note:
With the Huber method, both errors, the systematic and the remaining error due to compressibility, are
eliminated in one operation.

*) Calculated according to equ.3.1/19.
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3.3.3.2.6.Quasi density- , .

Since the systematic error of the airspeed indicator at high altitudes assumes considerable values air-
speed indicators have been developed that have a second pointer whose systematic error is significantly
lower (in ISA even zero). These airspeed indicators therefore additionally require the input of the air den-
sity (i.e. temperature and pressure) in the flight altitude. While the input of the parameter pn via an addi-
tional measuring box for the static pressure can be solved constructively with relatively simple means,
the input of the temperature into mechanical measuring instruments is difficult. The temperature is there-
fore considered to be normal atmospheric in the design of the device, i.e. it is replaced by the value that
belongs to the ISA pressure altitude. Under ISA conditions, therefore, no systematic error of the true air-
speed pointer occurs. The NL slide rules therefore have a second pressure scale marked with the cyrillic
letters KYC (which stands for komGuHMpoBaHHbIN yKka3aTtesnb ckopocTn = dual airspeed indicator), which
is used to correct the indication of the additional pointer when the temperature deviates from the ISA.
These relationships apply to the indication of the additional pointer vkyc and the actual speed vras:

Py R .T”|sA Po RTy Ty

V = V. = V. =V
e Pu e Pu T Tug,  [3.3/8]

As described under 3.3.3, the correction factor f is constructed for the 10 km mark by using the value 288
(starting point of the additional KYC scale) for T and the value 223 (ISA temperature at 10 km) for T isa:

-/ 288
VTAS=VKYC W = 1.136 =f

Fig.3.3/14 illustrates in a detail of an NL calculator how in the logarithmic speed scale the vkyc is multi-
plied by a factor of 1.136 when the pressure altitude is increased from 0 to 10 km in the KYC scale.

S0C +5°C
b — —60‘ 30 0 ‘+3o 100 150 :
E—— Y h A ] Fig.3.3/14
12<>109876543F1T 1To 150
——————»
for KYC h'a's' 4’58 1.136

In Fig.3.3/14 it can be seen that the additional scale KYC also indicates (although relatively difficult to
read) the normal atmospheric temperature for each altitude (at 10 km altitude e.g. -50°C) when the 15°-
degree-mark is set opposite to zero.

Note:

It is not necessary to correct the vkyc indication for the error due to the compressibility of the air, as this
only depends on the dynamic pressure q and the pressure pH. As these values are available to the instru-
ment, the correction for this error is already carried out during its calibration resp. construction.
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3.3.4. The elimination of the compressibility error of the airspeed indicator

3.3.4.1. General

According to 3.3.1, the compressibility error is the difference between vcas and veas. This error can be

eliminated by an additive correction (veas = vcas - Aveompr) OF by a factor (veas = vcas x feompr). The additive
correction must be made at vcas. One can correct multiplicatively the vcas as well as the systematic-error-

corrected vcas, which is called vpas in the computer IWA 11092.

3.3.4.2 Determination of the error Avcompr Using a diagram

50
The error Avcompr is shown in Fig.3.3/15, AVkompr E/E/E / /
in which the following example was tkm/h] ﬁ f’ 5‘ ~ °§ =
drawn: II”F',‘;Q;SS
Voas 520 km/h ARy
pressure altitude 10 km 40 // / &
U
Q~
AVcompr 27.36 km/h ‘;—G
4
q
This method is used, for example, with 30 / // &
*
the computers of the NL series. The dis- // e
advantage is that the diagram is part of 7= /]
the manual. On the NL-10 MK computer
o Ny
it is at least shown on the cover. 2
20 8
fz,‘“&
>
10
p ¥
/
The additive correction Avcompr can be /Zéj — m
calculated as follows using equ.3.3/2 and —
3.1/18: 200 300 400 5%02 . 600 700 800 900
— Vipg [k
Veas = 520 km/h = 144.4 m/s ‘ H =10 km ‘ Po= 1.225 kg/m®

PHg,= 26436 N/m? | T,

IS

_ _ - _ - 3
A= 223.15 K| ay =20.04 223.15 =299.36 m/s PH g, = 0.413 kg/m

K

2 K-1 2 35
Veg (K- 1 144 4
q520 = po <CA322)+1> -1 Hq520=101325 < > +1> -1 |= 13381 N/m2
4, 5-340
og? x-1 / 0.286
as/aq i L _ ,| (13381 ~
Vias = | - 1 <pH +1> 1 Vias = |[5+299 <26436+1> -1 =235.6m/s

P 0.413
VEAS= VTAS ﬁ = 2356 ﬁ = 1368 m/S

AViompr = Voas ™ Veas = 144.4 - 136.8 = 7.6 m/s = 27.36 km/h
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Note:
The remaining error due to compressibility Aveompr is therefore determined via the veas. This depends
only on pressure altitude p and dynamic pressure q:

AVkompr = Veas ™ VEas
! 1

Veas™ Vras || 1-H
Po
x-1

_| pu2az |[a * p 2k py | (9 ’
Veas —HEE = +1) -1 a=1/k 1 — v, .= HilZ—+1) -1
po(K-1) <pH > EAS Po(x-1) <p|-| *

k-1

However, this does not generally apply to the compressibility correction, which of course depends on the
character of the flow (see Fig.3.3/4) and thus on the Mach number. This is included in the calculation via vcas,
because the error due to compressibility for the altitude zero and the temperature 288 K is already eliminated
during the construction resp. calibration of the airspeed indicator.

3.3.4.3. Determining the error Avcompr With the computer NRK-2

The diagram (Fig.3.3/15) for the additive correction Avcompr is shown in the manual of the NRK-2
calculator and additionally incorporated into the calculator. The example discussed under 3.3.4.2. is
calculated with the aid of scales 14 - 16 (see Fig.3.3/16 and for an enlarged view Fig.3.3/17).

1. The triangle symbol in scale 15 is placed opposite the pressure altitude 10 km in scale 16.
2. Above the vcas = 520 km/h in scale 15 the value Avcompr = 27 km/h is read in scale 16.

4
% Fig.3.3/17

179



3.3.4.4. Determination of the correction factor fcompr

Computers that are designed for higher flight FARectOl P acTORe EUR 1D
speeds often have a table with the correction PRESS. ALT : AL ED PR OIS
factors feompr ON the diagram slide. In FIET | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550
Fig.3.3/18 - 21 some examples are given. The 10.000 | 1.0 |10 99 | 99 | 98 | 98 | 97 | 57
table of Fig.3.3/21 is printed in the manual 20.000 99 | 28 97 | sz | Ps| 95| 54 | 93
and Fig.3.3/22 is located in the centre of the 30.000 ST 296 ) 950 | ] 52 91 90 | .89
calculator. It is remarkable that the tables of 40.000 96 | %4 | 92 90 | .88 87 | 87 | 86
the different manufacturers make the same 50.000 93| 90 | 87 7o e e B BT
selection for the values for pressure altltgde Y DIRECTIONS
and vcas. Of course the factors are identical, USE CALIBRATED AIRSPEED AND PRESS. ALT. TO OBTAIN F FACTOR, MULTIPLY F FACTOR BY
TAS OBTAINED WITH COMPUTER TO OBTAIN TAS CORRECTED FOR COMPRESSIBILITY.

unless there are two minor exceptions in
Fig.3.3/21 and 22 (see marking).

COMPRESSIBILITY CORRECTION

L CEEU T F correction factors for TAS calibrated airspeed in knots
S 200 | 250 | 300 | 350 | 400 | 450 | 500 [ 550
10,000 Feet 98 a8 97 97
96 95 94 93
: 92| 91| 90| 89
"90 | 88| 87| . 86
£ D F\ 4 -“ -ﬁ .34
saokabey
F CORRECTION FACTORS FOR TAS :
PRESS. CALIBRATED AIRSPEED KNOTS .
ALT. [200 250 | 300 | 350 | 400 | 450 | 500 | 550 Fig.3.3/19
10000 [ 1.0 [ 10 | 99| 99 | 98 | 98 | 97 | W
20060 |99 | 88 | 97 | 87 | 86 | 85| 84 |
30000 | 97 | 96 | 95 | 94 | 92 | 91| 80 | .89
_guun 86 | 94 | 92 | 90 [ 88 | 87 | 87 | .86
50,000 | 93 | 90 [ .87 | 86 | B4 | B4 | B4 | B84
DIRECTIONS
umremassunesn |
0 OBTAIN TA'S CORRECTED FOR COMPRESSIBILITY. Fig.3.3/20
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Rectified air speed in Kt,
Pressure altitude | 200 250 300 350 400 450 500 550
in ft.

10.000 1.0 1.0 0.99 0,99 Q.98 0.98. 0,97 - 0.97

20.000 0.99 0.98 0.97 0.97 0.96 0.95 0.94 0.93

30,000 0.97 0.96 0.95 0.94 0.94\ 0.91 0.90 0.89

40.000 0.96 0.94 0.92 0.90 0.90 ) 0,87 0.87 0.86 :

50,000 0.93 0.90 0,87 0.86 0.86/ 0.84 0.84 0.84 Fig.3.3/21



The calculation of the factors is done in the same way as described under 3.3.4.2. For a pressure
altitude of 40,000 ft and a vcas of 400 kt (206 m/s) one obtains a dynamic pressure of 28,515 N/m2
and than with this the veas = 180.06 m/s. The factor fcompr is calculated as follows:

TR , x a,= 340 m/s

K K -1
| 2a2|/q _ Vops (K= 1)
Vons =|| ¢ <po+1> -1 — 4=P <26102+1 -1 p, = 101325 N/m?
2 3.5
™ Q500 =101325 < 2062 +1> -1 | = 28515N/m?
5x340
K-1 !
2 K py q * p, = 18730 N/m?
Ve = e+ 1] -
p, (k-1) | \PH p, = 1.225 kg/m?

1

2x1.4 x18730 |/ 28515 -
- 1 -1 =180.06 m/s

Vens = | 71225, 04 || 18730
fom s 180 a7y
M Vns 206 '

Tables 3.3/18 - 20 show the rounded value 0.88.

3.3.4.5. Determining of the factor fcompr With the computer Nr. 611

Fig.3.3/23 shows the principle of the
procedure of the computer 611 (here
called ,,Kompr. Berichtg.” = com-
pressibility correction).

The speed corrected for temperature
and pressure altitude (in the example
set here 1000 km/h) is placed opposite
the red arrow and the vias = 930 km/h
is shown under the 1000 km/h mark.
This is equivalent to multiplication by
the factor fcompr = 0.93. The other
speeds displayed on the computer are
listed in Tab.3.3/1.

[km/h]| 400 | 600 | 800 1000

[ki] 216 | 324 | 432 540

foompr | 0.99 | 097 | 095 | 093
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Tab.3.3/2 shows the correction factors fcompr for selected altitudes and speeds in km and km/h, in which
the factors of the calculator 611 are highlighted.

F;rlﬁtsj ; (;e Calibrated airspeed [km/h]

[km] | 400 500 600 700 800 900 1000

3 0. 0.99 0.99 0.98 0.98 0.97 0.96
6 Q@ 0.98 é!b 0.96 (@ 0.94 ‘EB
9 0.97 0.96 0.95 0.93 0.92 0.90 0.89

12 |0.95 0.93 0.90 0.88 0.87 0.86 0.85
15 ]0.92 0.89 0.87 0.86 0.84 0.84 0.84 | |ElsKeReI

This clearly indicates that the correction factors of this calculator are only valid for the pressure altitude
6000 m. It is possible that the errors were neglected or that other altitudes were taken into account
approximately by a rule of thumb.

3.3.4.6. Determining of the factor fcompr with the calculator IWA 11092

The IWA 11092 calculator has a rotatable pointer with a logarithmic scale with the factors 0.84.....1.0 which
is used to allow multiplication by the factor fcompr in the speed scale. The table with these factors (see
Fig.3.3/22) is part of the calculator. This example explains the handling with the aid of Fig.3.3/24 and 25
(enlarged picture):

Vcas 350 kt
pressure altitude 20,000 ft
C.OAT. - 40°C

The correction of the vcas by the systematic error leads to an intermediate result which is called density air-
speed (DAS) in the manual. The calculation is done in the usual way by setting temperature and altitude in
the AIRSPEED window opposite each other. In the speed scale, the value vpas = 464 kt is determined
opposite vcas = 350 kt (analytically calculated: 464.3 kt). This speed multiplied by the factor fcompr = 0.97
results in vias = 450 kt (analytically calculated: 448.8 kt). In addition, veas = vcas x 0.97 = 339.5 kt can be
read on the same scale. In the scale TEMPERATURE RISE one reads for V1as = 450 kt a value around 26°,
which speaks for the coefficient ct = 1 (see equ.3.1/15).

0.97

compr

20000 ft o

C.O.AT. -40°C
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0.97

compr

Vy,s = 450 kt
Voas = 464 kt

Vas= 350 kt

Vene = 340 kt

3.3.4.7. Compressibility correction with the computer ARC-2

The following example describes the handling of the computer ARC-2 for the calculation of the true air-
speed considering the remaining error due to the compressibility of the air with the help of an approxi-
mate solution:

VCAS 300 kt
pressure altitude 30,000 ft
C.OAT. -40°C

@ The value C.O.A.T = - 40°C is set in the AIRSPEED window opposite the pressure altitude 30,000 ft
(see Fig.3.3/26).

An uncorrected vras = 495 kt is read from the outer scale opposite the 30 (vcas = 300 kt). The figure
495 is divided by one hundred, three is subtracted from the result and the result is 1.95 (4.95 - 3 =

1.95). This procedure is described next to the COMPRESSIBILITY CORRECTION window (TAS/100 -
3 divisions).

In the window COMPRESSIBILITY CORRECTION the arrow is moved from position 42 by the value
1.95 to position 43.95 (see Fig.3.3/27).

Opposite the 30 (vcas = 300 kt) a vias = 479 kt can now be read (see Fig.3.3/27). The exact result is
vias = 468, so the approximate solution here has an error of 2.4 % (479 : 468 = 1.024).
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3.3.4.8. Compressibility correction with the computer B-26

For speeds between 500 and 600 kt and altitudes above 35,000 ft, the computer B-26 offers an
approximate solution for the calculation of vras under the condition of standard atmospheric
temperatures, which corrects both the systematic error and the remaining error due to compressibility.
The following example is used to check the accuracy:

pressure altitude 40,000 ft
VCAS 550 kt

Using a calculator of the CR series (Huber patent) whose accuracy was proven at high Mach numbers
under 3.3.2, the Mach number M = 1.67 is determined for this example. Under ISA conditions, the sound
speed is in 40,000 ft

! 1
az‘\/ k RT =‘\/1,4x287x216.5 =294.9 m/s =573.3 kt

For the vias one gets:

vias=Ma=1,67 x 573.3 = 957.4 kt

To solve this problem, the operating manual prescribes a computer setting according to Fig.3.3/28.

Vo = 1015 kt

TAS

Veag = 950 kt

PA = 40000 ft

Vous = 550 kt

The result vias = 1015 kt deviates by 6% from the exact value (1015 : 957 = 1.06).
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3.3.4.9. Determination of true airspeed according to Huber

Fig.3.3/29 and 30 schematically show the structure of a Huber computer.

window with lines for
indicated temperature

window for vtas

reading mark for
Mach number

window for Mach number window for veas

and scale for
pressure altitude

window for temperature rise

disc with spiral line and scales for vcas,
vtas, Mach number and temperature rise

reading line

“ forc.=1.0
J valid for

toge = 99°C
tge = +15°C

| reading mark for
\ v —— TEMPERATURE
\ 5 RISE °C (c;=1.0)
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Chapter 3.3.2. describes how the Mach number is first calculated from dynamic pressure (vcas) and pressure
altitude using the Huber method. The true airspeed can be calculated from Mach number and sound speed
(i.e. temperature). The Huber calculator uses the indicated temperature (trar) in the interest of simplest
handling. The construction of the vras scale is first carried out for arbitrarily selected values of the indicated
temperature (here trar = 0°C) and the temperature recovery coefficient (here cr = 0.8). With this factor, the
temperature rise At is reduced by 20% so that the following formula applies for the correct temperature Tsar
at a displayed temperature of 0° (273 K):

Tsar =273 - 0.8 At

The vias can then be determined using this equation:

1 1
viaso =a M= MVK R Tsar = M‘\/K R (273 - 0.8 At)

The calculation is somewhat problematic, since the temperature rise itself is a function of the vras. Therefore,
for each Mach number one must first introduce an estimated At value into the calculation and with the
received speed determine an improved At value, with which the calculation is repeated (iteration). For the
Mach numbers 0.65, 0.7 and 0.85 this correlation is demonstrated (see Table.3.3/3 and Fig.3.3/31).

temperature !
M | rise At derived | vraspo = MVK R (273 - 0.8 At)
by iteration
0.65 21.5 208 m/s = 404 kt
0.7 25.0 223 m/s. = 433 kt
0.85 35.0 266 m/s =518 kt Tab.3.3/3

_RERISErs.
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The v1as can be used to determine the line for the indicated temperature 100°C (373 K) in the same way:

/

VTAS/H00 = M_\/K R (373 - 0.8 At)

Table 3.3/4 lists three true airspeeds that allow the construction of the 100° line in the INDICATED
TEMPERATURE field.

temperature _ !
M | rise At derived | vras/i00 = M\/K R (273 - 0.8 At)
by iteration
0.65 29.0 244 m/s = 473 kt
0.7 33.5 261 m/s = 507 kt
0.85 48.0 311 m/s =605 kt ab.3.3/4

Fig.3.3/32 shows the example for M = 0.7 from Tab.3.3/4 in the computer CR-3, which comes to the result
vias = 504 kt. With the computer AL 6 (see Fig.3.3/33) a true airspeed of 520 kt and with the computer
AVIAT JET 647 (see Fig.3.3/34) 507 kt is determined.

intersection of the

line c1=0.8 with the
position of the spiral line 100°C (indicated
line at M = 0.7 temperature)

ct=0.8

line of indicated
temperature 100°C

v1as = 504 kt

~URE RISE o Fig.3.3/32)
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v1as = 520 kt

line of indicated
temperature 100°C

intersection of the line ct=0.8 with the
line 100°C (indicated temperature)

position of the spiral
lineatM =0.7

vtas = 507 kt

line of indicated
temperature 100°C

position of the spiral

lineatM =0.7
intersection of the line c1=0.8 with the
M=0.7 line 100°C (indicated temperature) Fig.3.3/34
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As can be seen from Fig.3.3/34, the correction field of this calculator is based on the indicated
temperature 0°C and the factor cr = 1 for which applies:

Trar = Trat = Tinoic

The following example illustrates how this simplifies the calculation of the temperature curve
Tinoic = 100°C:

M=0.64 ty, = 0°C (278 K) | tpz,=100°C (373K) |cr=10

T = Teur(1+0.2M2)  (see equ. 3.1/13)

KR T,
s=aM=M /K
2+02
_ v _ KR Ty, kKR TFAT1 _
AV'= Viasy ~ Vrasy = 1ﬁ2+0'2 a |\1/TZ+0'2 B L+02 V Toarz = | Toars
M?

av = | 14 (287) \/577/273 =34.4m/s = 66.9 kt
2+02

One point of the line tingic = 100°C is calculated with it. In Fig.3.3/35 the result of this example has to be
confirmed:

For the true airspeed

at indicated temperature
0°C 396 kt and at 100°C
463 kt are determined
(Av = 67 kt).

line of indicated
temperature 100°C

line of indicated
temperature 0°C

intersection of the line
ct= 1 with the line of
indicated temperature
0°C

M =0.64

intersection of the line

cr= 1 with the line of :

Fig.3.3/35
indicated temperature
100°C
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A diagram based on the indicated temperature 0°C and the factor cr = 1 shows Fig.3.3/36, which can be
used to correct the true airspeeds determined for a certain Mach number when other temperatures are
present. The diagram shown in a circular form in the computer moves over a spiral line which replaces the
Mach number lines (abscissa axes). In Fig.3.3/37 it can be seen that the turning points of the temperature
lines (which are a consequence of the changed flow conditions at M >1) do not lie on the concentric arc
marked in red, but on the spiral line. In this way, the corrected speed can be found below the intersection
of the spiral with the temperature line.

-50° C 0°C +50°C +100°C
M 1.3 /
1.2

/
|

- -

-100 0 +100 [kt]

Av +66.9 Fig.3.3/36

spiral line

concentric arc
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About the construction of the reading lines for the thermometer constant ct on the transparent arm (see
Fig.3.3/30) the following must be said. On the calculators there is this explanation for the double reading
lineatcr=1:

- - - STD.SEA-LEVEL TEMP. (+ 15°C) - - -
—— STD.STRATOSPHERE TEMP. (- 55°C) ——

Huber writes about this in his patent specification:

»1hese pairs of curves could be plotted as single curves computed for a temperature which is an average of
the temperatures occurring most frequently during the flight schedule. This method, of course, would not be
as minutely accurate as the double curve, but the computer setting would be simpler, and subject to less
confusion.”

Although the double reading lines only become effective at Mach numbers above 1, most computer manu-
facturers have not made use of this simplification option. The problem is worthy of further investigation.

Imagine two airplanes of the same type flying side by side at the same speed, but with thermometers with
different "TEMPERATURE RECOVERY COEFFICIENTS", namely ct = 0.8 and 1.0. The temperature rise
dependent on the true airspeed is At = 50°C. In a first example the true temperature of the outside air is 0°C.
In the aircraft with the error-free thermometer (cr = 1.0) an outside air temperature of +50°C (0 plus At) is
indicated and in the other aircraft +40°C (0 + 50 x 0.8). In a second example the true temperature of the
outside air is - 50°C. In the aircraft with the error-free thermometer (cr = 1.0) an outside air temperature of
0°C (-50°C plus 50°C = 0°) is indicated and in the other aircraft -10°C (- 50° +50 x 0.8). On the compuiter,
which must supply the same vas for both cases, this is as follows:

To determine the true airspeed, the line indicated  1j=+50"C

ct = 0.8 or ct = 1 must be brought over the temperature tj=+40°C ‘
intersection of the spiral line and the tempe- ’
rature line. In a warm atmosphere (as in the o

first example) the dashed line should be spiral line —____ Vr
used. If the determination field for the speed

scale was designed for cr = 0.8, the 1.0 - line

must be constructed so that the distance of mark for v,

the lines 0.8 and 1.0 along the spiral line (here 616 ki)

corresponds to the distance of the tempe-
rature lines +40° and +50° (see Fig. 3.3/38).

mark for At
(here 50°C)
Fig.3.3/38
In the second example, a cold atmosphere
with a C.0.A.T. = - 50°C is assumed under indicated =0C
otherwise identical conditions.The tempe- temperature t = -10°C
=

rature rise of 50°C results in a display of
0°C (50 - 50) in the aircraft with the ct = 1
thermometer and -10°C (-50 + 40) in the
other. At the computer this is shown as
follows: Since this is a cold atmosphere,
the non-dashed ct = 1 - line must be used,

spiral line —_

which lies further to the right of the 0.8 -
line than the dashed one. This takes
account of the fact that the distance
between the temperature lines in the deter-
mination field increases from right to left
i.e. from the warm to the cold side (see
Fig. 3.3/39).

mark for v ¢
(here 616 kt)

mark for At
(here 50°C)
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4.Annex

4.1. Formula symbols and abbreviations used

ODA
QUWCA
ASIR
CAS

CH
C.OAT
CRS

CT

At
AVkompr

DEV

sound speed

drift angle

wind correction angle

airspeed indicator reading
calibrated airspeed

compass heading

corrected outer air temperature
course

temperature recovery coefficient
wind direction

temperature rise

compressibility error of the airspeed
indicator

distance

drift angle

deviation

direction finder

difference of latitude

difference of longitude

wind angle

east

equivalent airspeed

average (mid) geographical latitude
Fahrenheit

factor for TAS correction due to
compressibility

ground speed

hour

altitude, hight

indicated airspeed

instrument landing system
International Commission for Air
Navigation

International Civil Aviation Organization
International Standard Atmosphere
Kelvin

knots, nautical mile per hour

left hand

line of position

Mach number

magnetic bearing from
magnetic bearing to

magnetic course

minute

magnetic heading

stat. miles per hour

mid.latitude

mean sea level

magnetic track

north

north direction of the compass
non direction beacon

nautical miles
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Nmagn
Ntrue, NT
w2z
OAT
P
PE.T.
P.N.R.
q
QDM
QDR
QFE
QNH
QTE
QuJ
P

R
RAS
RAT
RB
R.H.
ROC
RWY
S, sec
S

SE
SAT
%

Tt
TAS
TAT
TBfrom
TBto
TC
TH
T

u

Vv
VAR
VG
VGA
VOR
VTAS
VTASeff
Vv

Vw
vwc
VwL

WCA
WS

meridian of the magnetic north pole
meridian of the geographical north pole
angular speed (vertical axis)
outer air temperature

static pressure

point of equal times

point of no return

dynamic pressure

magnetic bearing to
magnetic bearing from
pressure at airfield elevation
pressure adjusted to MSL
true bearing from

true bearing to

air density

radius, gas constant
rectified airspeed

ram air temperature

relative bearing

right hand

rate of climb

runway

second

south

south east

static air temperature
rhumb line (loxodrome) course
time

true airspeed

total air temperature

true bearing from

true bearing to

true course

true heading

true track

wind speed

airspeed

variation

ground speed

average ground speed
omnidirectional radio range
true airspeed

effective true airspeed
vertical speed

wind speed

cross wind component
longitudinal wind component
vertical speed (ROC), wind speed,
ground speed

west, wind point

wind correction angle

wind speed, ship speed



4.2. References to the illustrations

Abbreviations used:

D Pictures drawn by the author. Information in brackets indicates the origin (if nothing is noted these are
drawings of items from the author's collection).
S  Scans of items from the author's collection.

Figure Source Figure Source
1.1/1-4 D 1.28/1 D (Immler: Grundlagen der
1.2/1-2 S Flugzeugnavigation)
1.2/3-7 D 1.29/1 D
1.2/8 S 1.30/1-4 D,S
1.2/9 D 1.31/1-2 D,S (Clemens Richter:
1.2/10-12 D Ultraleicht Flieger)
1.2/13 D 1.32/1-4 D,S
1.2/14-17 D 1.33/1-2 D,S
1.2/18-19 D (Weems: Air Navigation) 1.34/1-2 D,S
1.2/20-25 D (US patent 2,013,603) 1.34/3 D (US patent 3,276,682)
1.3/1 D 1.34/4-7 D,S
1.3/2 S 1.35/1-4 D,S
1.3/3-5 D 1.35/5 (Bennewitz:
1.4/1 S Flugzeuginstrumente)
1.4/2-3 D 1.35/6 D (internet)
1.4/4-6 D 1.35/7-9 D
1.5/1 D 1.36/1 D
1.5/2 D (GB patent 150103) 1.36/2-7 D (GB patent 581,906)
1.5/3 D 2.1/1-4 D
1.5/4-9 D (GB patent 427117) 2.2/1-5 D
1.6/1 S 2.3/1-2 D
1.6/2 D (US patent 2,334,135) 2.3/3 S (US patent 2,823,857)
1.7/1 S 2.3/4 D
1.7/2-6 D (FR patent 621.521) 2.3/5 S
1.8/1-17 D (patent GB 430,449 2.3/6-8 D (US patent 3,276,682)

and GB 395,806) 2.3/9-10 D (US patent 4,555,852)
1.9/1-3 collection Jochen Brandt 2.3/11-14 D
1.9/4-10 D 2.3/15 S
1.10/1 S 2.3/16-17 D
1.10/2-3 D 2.3/18-19 D,S (Weems: Air Navigation)
1.11/1 http://www.knightson.co.uk 2.3/20-23 D
1.12/1-4 D,S 2.4/1-10 D,S
1.13/1 S 2.4/11-14 D
1.13/2-12 D 2.5/1-4 D
1.14/1-10 D (Deutsche Nationalbibliothek 2.6/1-11 D,S

Signatur: 1936B2684) 2.7/1-8 D
1.15/1-4 D (collection A. Piel) 2.8/1 D
1.16/1-2 D 2.9/1-10 D
1.17/1-5 D 2.10/1-9 D (US patent 2,405,113)
1.18/1-4 D 2.11/1-6 D
1.19/1-4 D,S (Annalen der Hydrographie 3.1/1-19 D,S

und maritimen Meteorologie 3.2/1-5 D
Nov./Dez.1918) 3.3/1-39 D

1.20/1-3 D (https://arc.aiaa.org/doi/

10.2514/6.2010-158)
1.21/1-2 D (FR patent 626.697)
1.22/1-4 D
1.23/1-3 D,S
1.24/1-5 D (E.JUnger: Luftfahrt ist not!)
1.25/1-9 D,S
1.26/1-3 D (Weems: Air Navigation)
1.27/1-3 S
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http://www.knightson.co.uk
https://arc.aiaa.org/doi/
http://www.knightson.co.uk
https://arc.aiaa.org/doi/
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Addison, Herbert, 20
Anderson. J.D., 160

Bakker, Olof, 37

Batori, Oscar, 67

Bellamy, 121, 143,

Bernoulli, 155, 167

Boyle,147

Braun, 79

Brazel, J., 114

Burt, 103

Bygrave, Leonard, Charles, 14
Campbell, G.R.C., 49
Clemons, 139

Coutinho, Gago, 61

Dalton, Philip, 3,4,6

Dodd, 89

Felsenthal, 152

Gillmer, T.C., 74

Goerz, C.P, 68
Goudime-Levkowitsch, Paul, 22, 132
Gross, 128

Harrison, G.B., 49

Heitor, A., 111

Hokanson, E.C., 98

Huber, 157, 169, 171, 172, 176, 185, 186, 187
Immler, Werner, 58

Jensen, H.M., 71

Junkers, 174

Kalaschnikow, M.W.,53
Keator, FW., 112

4.4. Subject Index

ADJUVATOR, 174
Aerodynamic ceiling, 160

Air density, 149

Air distance, 143

Air line flight calculator, 98
Air pressure error, 165
Airspeed, 1

Airspeed indicator, 175
Airspeed indicator reading, 166
Ambient air temperature, 154
Angular speed wz, 126
ARC-2, 152, 182

Asa E-6B, 152

ASIR, 166

ATS-4, 32

AVIAT, 152, 158, 159
AVIATJET, 159

Aviator, 32

AVIONAUT computer, 46

B-24, 67

B-26, 185

BAC HOLDING PATTERN COMPUTER,129
Bank angle, 125

Barometric hight formula, 146

Bearing, 107
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Kelvin, 150

Knemeyer, 11

Knight, 39

Lahr, Ray, 40

Laplace, 146, 162
Luard, William Blaine, 20
Lyon, Thoburn C., 51
Mach, 156

Mailloux, Louis-Joseph, 63
Maleysson, Charles, 85
Mariotte, 147

Nelson, 97, 139
Nemtschinow, W.G., 12
Peters, M.W., 65

Phelps, A.T,, 91,112
Pilehn, 99

Plath, 32

Plumly, 77

Popow, L.S., 12
Rayleigh, 171
Schiffmann, 89
Schmidt, F., 84
Simmonds, 0O.,132
Stephan, 96

Sterligow, B.W., 56
Sweeney, Beauregard, 18
Tornich, Mary, 118
Thurston, Arthur, 18
Wright, 103

Bernoulli formula/theorem, 155
BRAUN COURSE FINDER, 79

CAS, 166

Calibrated airspeed, 166

CDC, 49

Cercle Calculateur, 63

C.O.AT, 154

Coffin corner, 160

Compass, 1

Compass heading, 1
Compressibility correction, 183
Compressibility error, 166, 178
Computer 1-CH-1, 144
Computer Nr. 611, 181
Conversation, 109

Corrected air temperature, 154
Correction factof, fcompr, 180, 181
Corrector de Abatimento, 61
Course, 1, 107

COURSE AND DRIFT CALCULATOR CDC, 49
Course to steer, 23, 24, 65

CR-3, 152

Crossover altitude, 160

Cross wind component, 12, 41, 67
CSG-6PR, 152,

Curve radius,125



DA, 1 Japanese design, 100
Datum mark, 65 Junkers ADJUVATOR, 174
Dead reckoning, 135

DENALT, 152, 154

Density altitude, 150, 151, 174, 175 Kk7, 33
Density altitude performance computer, 152 Knightson computer, 39
Descent, 135 Kos5, 35
Deviation, 1 KYC (koMbrHMpOBaHHbIN yKasaTtenb ckopocTu), 177
Diagram slide, 3, 111
Distance determination, 127 LATITUDE FOR PRESSURE PATTERN, 143
DME plus, 81, 126 Le De'iveur, 85
Double-drift-method, 29 Level turn, 125
DR-2, 173 Line of Position LOP, 107, 128
DR-3, 102 Longitudinal component, 6, 41, 67
Drift, 2
Drift angle, DA, 1, 5 Mach number, 156
Drift correction, 124 Magnetic heading, 1
Drift speed, vn,143 Mark lIA, 18
Drift triangle, 1 Mark VII, 6
Dynamic pressure, 155, 160, 167 Mean sea level, MSL, 143, 144
Meeting point, 119
E-1A, 8 MERCATOR COMPUTER, 116
E6-B, 3 Meridian, 1
Equivalent airspeed, 166 MK Il A, 15, 18
Model G, 3
Felsenthal PT, 152 MSL, 143, 144
Flight envelope, 160
Four-Point-Bearing-Procedure, 103 NAVIGATIONAL COMPUTER, 71
Four vector calculator, 132 Naviquick, 114
Navtronic navigator, 152
GATCO 1 calculator, 87 NL-Computer, 2, 12, 109, 125, 126, 135, 136, 158,
General gas equation, 147 159, 164,173, 177
Geometric atmosphere, 146 North Pole, 1
Geopotential atmosphere, 146 NR-1, 42
GILLMER COMPUTER, 74 NRK-2, 53, 159, 179
Goerz wind and speed calculator, 68
Ground speed, vg, 1 Outbound leg, 129
Ground speed and drift table, 89 Outer air temperature, 154
Heading, 1, 107 Phelps Speedy Flight Computer, 91, 112
Headwind, 2 Pilot’s pocket DME, 127
Holding pattern,129 Pitot tube, 166,169
Huber-Patent, 159 Plotter Kk7, 33
Huber-computer, 186 Plotter Ko5, 35, 137
Plotting board, 135
IAS, 166 PLUMLY COMPUTER, 77
ICAN, 148 Point of equal times, PE.T., 115
Inbound track, 129 Point of no return, PN.R., 116
Incompressible flow, 169 PORTLAND DEAD RECKONING CALCULATOR, 65
Indicated airspeed, 166 PRACTICAL AIR NAVIGATION COMPUTER, 51
Indicated temperature, 154 Pressure altitude, 147
Installation error, 154, 166 Pressure pattern, 143
Instrument error, 166
Intercept heading, 132 QDM, 107
INTERCEPTOMAT, 128 QDR, 107
International Commission for Air Navigation, 148 QTE, 107
International Standard Atmosphere ISA, 143 QuDiemM-Navigator, 94
IPC-1, 82 QuUJ,107

Isothermal atmosphere, 146, 148
IWA, 152, 159, 178, 182
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Radial acceleration, 125
Radius, 125

Radius of action, 116, 117
Ram air temperature, 154
Range diagram, 117

RAS, 166

RAT, 154

Rate of climb, ROC, 152
Rayleigh pitot tube formula, 171
Rectified airspeed, 166
Relative approach speed, 132
Relative bearing, 107

Relative range, 117

Relative wind angle, 1
Rendezvous problem, 119
Rhumb line, 139

ROC, 152

SAT, 154
Schiffmann-Dodd-Navigator, 8
Ship speed, 27, 133,165
Simplified Flight Calculator, 97
SN-3m, 157, 159

Sound speed, 160, 168
Speed made good, 65, 66
Stagnation point, 169

Static air temperature, 154
Static pressure, 155
STEPHAN NAVIMAT 501, 96
Subsonic compressible flow, 169, 170
Supersonic flow, 169, 171
Systematic error, 162

Tailwind, 2

TAS, vias , 1, 166

TAT, 154

Techstar, 152

Temperature recovery coefficient ct, 157
Temperature rise, 154, 155, 182
Time-speed-distance-calculator, 112
Total air temperature, 154

Total pressure, 166

Track, 1

True airspeed, TAS, 1, 166

True course, 1

True track, 1

Turn radius, 125

Universal diagram, 58

Variation, 1
VC-2,9, 134
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WCA, 1

WCA-2, 84

Wetrochet, 56

Wind angle, 1

Wind component, 6

Wind correction angle, awca, 1
Wind correction triangle, 1
Wind direction, 1

Wind point, 3
Windprotractor, 37

Wind speed, 1

Wind triangle, 1



