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The observation is supposed to give the apparent distance and
apparent altitudes of the two objects; but if the latter cannot
be observed, they must, in order to apply the present method,
be previously computed by the known rules. Taking at once
the most general case, namely, that in which the object ob-
served with the moon also has parallax, let us call this object
¢ the sur.” Our formulas will require no change for a planet,
and for a star no other change than making its parallax zero.

Let, then,

d = apparent distance of moon’s and sun’s centers.
Section 1V.) :
h = moon’s apparent altitude.
H = sun’s « «
dy, hy, H,, the distance and altitudes referred to that point of the
earth’s axis which lies in the vertical of the observer,
which point (after BesseL) we shall distinguish as
the point O.
We have the known fundamental relation,
cos dy — sin & sin H;
cos hy cos H;

- sin & sin H, cos ky cos Hy
T sinksin H ? " coshcos H

(See

cos d —sin h sin H
cos h cos H

et e S o adn

[OT———

s

Lo 2t

then

cosd—cosdy = (1—n)cosd— (m—n)sinhsin H. (1)
Let

dd=d,—d, dh=h—h, 4H—=H—H,,
then

cosd—cosd, =2sin} ddsin (d43% 44d)
__cos(hf-Ah) cos (H—AH)

2sin}AHsin(H—43AH)
<l+ cos H )
2sindAhsin(h3Ah) 2sin§AHsin(H—§AH)
cos h cos H)y
+4sm&AhsmiAHsm(h—{—gAh)sm (H——gAH)
cos & cos H
Also, observing the relations
sin b cosh =4 [sin (24 4 44) ~+sin 44]
coshy sin b = 4 [sin (2 4 4h) —sin 44]
sin H, cos H=} [sin (2 H— 4 H) =—sin 4 H]
cos H sin H=14 [sin (] H—4 H) +sin 4 H]
we find

l—n=

sin A, cos A sin H, cos H—cos k, sin h cos H, sin H
sin A cos A sin H cos H
sm Ahsin (QH—AH)—sin AHsin (2h4Ah)
2 sin A cos A sin H cos H

m—n=—

If, then, we put
2sin§ Ahsin(h}3 AR)cosd

4= cos h
B ____sinAhsin(2 H—AH)
1= 2 cos A cos H
c _2sm§AHsm H—1} AH)cosd -
- R s s R
D, — sin AHsin (224 AhR)
1 2 cos h cos H
the equation (1) becomes
2sin§Adsin(d+§ Ad)=Ar+.B1—l— C1+.D1-—A.| Clsecd. (2)

This rigorous formula may be adapted for practical use in
several ways requiring auxiliary tables. I proceed to give the
transformation which appears to require the fewest and sim-

plest tables.
1L

cosh

cos h cos H
_ (l: 2sin 4 Ahsin( h-|—§Ah)>

If the terms of (2) are reduced to seconds, we shall have

Adsin(d4-3Ad)=Ai+ B+ C +Di— 4, Cisin”secd  (3)
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in which altitude, for with the latter arrangement the same table wil_l
4, = k| in (h+3% dh)cosd serve to give the correction either of 7 or of 7.
cos These quantities then being substituted, the corrections of the
B=—2 h_sin (2 H—A H) apparent altitudes become
cos h 2 cos H 4k = (p—1) (l-|—K) cos h
7 AH p
Cl——ﬁ.sid(H—{;AH)cosd AH= (R —P)cos H
AH sin(@hd-ah and the terms of (8) become
D= @ 8cosh A= (p—7r) (14K)sin(h+4dh)cosd
Let : sin (2 H— A H)
p = moon’s horizontal parallax reduced to the point O. (See Bi=—(—r) 1+K) 2 cos H
Section 1IL.) C,=—(R—P)sin(H—}4H)cosd
7 = moon’s refraction. sin (2h4AR)
P, R, the same quantities for the sun; then D= (R—P) :

4k =pcos (h—r)—r
AH= R— P cos (H—R).

The neglect of R in the term P cos (H — R) produces an
error altogether inappreciable in practice; but the error pro-
duced by omitting 7 in the term p cos (A — r) may amount to
1", and we shall therefore take

cos (h—r) = cos h 4 sin r sin
dh=pcosh—r-4psinrsink
sin r sin &
= (pcosh—r) (1 -|—’; cosh-—r)
If we develop the last term, and put
k=rtanh

we shall have, designating the term by K,

= ksin 17 (l—l- )
psinh

in which p may be taken at its mean value ; and since k and &
decrease together, it will be found that K is nearly constant, its
maximum being .000296, and its minimum .000285. A wider
range will be admitted if we allow for the variations of the
barometer and thermometer, and of p ; but without here enter-
ing into more details, it will suffice to state that the error of the
value

_psinrsinh

peos h—r

K = .00029
is always less than .00006 so long as h > 5°, and the formula
4 h = (p cos h——r) (14+K)

gives 4k w1th1n 07.05 at a mean state of the air, and w1thm
0.2 in all cases.

Let now

/ — T [ — R
" cosh’ T eos H' A

The quantities 7 and R’ will be given by a ¢ Refraction
Table for Lunars,” which with the argument apparent altitude
will give the refraction divided by the cosine of the altitude,
and will be arranged precisely like the ordinary tables of re-
fractions. The corrections for the barometer and thermometer
may be arranged as usual in nautical tables, with the arguments
height of barometer (or thermometer) and apparent altitude ;
or, which is preferable, with the refraction itself- instead of the

| being. only. about. 1”..

2 cosh

The term 4, C,sin 1” sec d is very smhall, its maximum
It is easy to obtgin.an. approximate _ex-
pression for it, and to combine it with the term Al ; for in so
small a term we may take

C,=—R'sin Hcosd = —k' cos d

where £’ = R tan H ; and without sensible error in most cases
we may take &’ sin 1” = K, so that
C,sinl”"secd=— K

and
A,—A,Csinlsecd=(p—1') (14-K)*sin (k4§ 4h) cos d.

The error of this evaluation of the term 4, C, sin 1” sec d is
produced chiefly by the neglect of P, and is therefore appre-
ciable only in the case of the planet Venus. If we suppose the
extreme case in which P, p — 7/, and H are all at their maxi-
mum values, the error in this term is

07,44 cos d

and since the equation (3) is yet to be divided by sin d, the
final error in the distance is
07.44 cot d

and can amount to 17 only when d < 24°. Moreover, the
error is of the less importance in the case of Venus, because
much less than the probable error of observation arising from
an imperfect bisection of the planet’s disc in the feeble tele-
scope of the sextant.

Now let (i o
sin A 3.
A =(4xp 0D
sin(QH—AH
B = (14-K). sin2H -
C _ sin(H—§ AH)
— sin H
D =sin R~r-}AR) \ (A)
sin 2 A
and
A'= (p—r)Asinhcotd
B' =— (p—1r') Bsin Hcosec d
C' =—(R—P) Csin Hcotd
D= (R’——-P)Dsmh cosec d J

then our formula (3) becomes
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sin (d4-3Ad) __

sin d

4d. = A+ B+ C+D.

Developing the first member, it becomes

4d (1+2sin4Adcos d+4 Ad))

sin d
so that if we put

A d?sin 1” cos (d4-4 A d)

sin d
or, with sufficient accuracy,
x=—Ad*sin 1" cot d (B)
we have finally '
dd=A"4+ B+ C+4 D 4= (©)

The logarithms of 4, B, C, and .D can be given in extreme-
ly simple tables, requiring little or no interpolation, the argu-
ments for log A and log D being p — ' and £, and those for
log‘Rde.lag.C being.R!—P.and H.. A!, B!, C!,-and-D' may
then be computed with the greatest ease. The value of z can
be given in a small table with the arguments #d and d, the
table being first entered with the approximate value of 4d =
A+ B+ C+ D.

The advantages of the preceding process are conceived to
be, — 1st. The formula is almost rigorously exact, representing
the correction of distance in all practical cases within 17 ; 2d.
The logarithmic computation is simple and brief; 3d. The

tabulated logarithms require no correction for the height of the’

barometer and thermometer. In no one of the approximative
methods in use are these features combined. Those which are
based upon accurate formulas either require troublesome com-
putations, or are shortened by the use of tables in which a mean
refraction is used, and no ready method is given for correcting
the logarithms in these tables for the actual state of the air.
Such for the most part are Bowpircr’s methods. It would
hardly be necessary to allude to those which are not based
upon accurate formulas, were it not that one of this character
has been adopted in a comparatively recent work of great
merit in most respects, RaPER’s Practice of Navigation. The
approximative method employed in that work is one received
from MexpozA Rios, apparently without a very critical exami-
pation ; in favorable circumstances, and particularly in low lat-
itudes, it may be so applied as to be sufficiently accurate, but in
high latitudes cases are common in which the error in the dis-
tance is 107, and in the extreme case the error is 50/.*

* The development of 4/ d in series as far as the terms of the second
order is

A B2 gin?
Ad=— A4hcosq+4 4 Hcos Q+———.s::n;
sin ¢ sin @ A H2 sin2 Q
+dhodHo_sW_+—_2—- tand

in which ¢ and Q denote the angles included between d and the zenith-
distances of the moon and sun respectively. In the method referred to
in the text, the formula employed is equivalent to

a 2
ni——dhcosq-l—dHcosQ-}- g ::;:
go that the error E in the distance is )
_ singsin @ | A H? 5in2@Q

E= (Ah.AH.—————smd 422 .md).

If we compare our method with the shortest of the rigorous
processes of spherical trigonometry, we find,—1st. It is simpler
in the logarithmic computation, requiring only four-decimal, or
at most five-decimal logarithms. It is also an important sim-
plification for the practical navigator, that the distance and alti-
tudes are not required to be combined (to form, for example,
their half sum, etc.), previously to referring to the tables, as in
almost every other method, approximative or rigorous. 2d. It
separates the principal corrections for the moon and sun, the
principal correction for the moon being 4’4 B/, and that for
the sun being ¢’ 4+ D’. The advantage of this separation ap-
pears in the method to be given for computing the correction
for contraction of the moon’s and sun’s semidiameters by re-

fraction. (Section IV.)
1L

Correction for the Compression of the Earth.* —In the pre-
ceding investigation d,, A, H,, represent the distance and alti-
tudes referred to the point O. (Section ) This reference may
be made in the case of the moon by employing a horizontal
parallax equal to her equatorial horizontal parallax increased

. . a . . .
in the ratio 71, a denoting the equatorial radius of the earth,

and a, the distance of the observer from the point O ; which
distance is the normal of the spheroid, and is expressed by

a
A (1 —2 sin2 @)
where ¢ = eccentricity of the meridian,
¢ = geodetic latitude.

This process is subject to a slight theoretical error, the amount
of which will presently be estimated. ,

If we denote by —a ¢ the distance from the center of the
earth to the point O, and put

a, =

7 = moon’s equatorial horizontal parallax,
¢ = distance of the moon from the center of the earth,
0 = moon’s geocentric declination,

d’= angular distance of the moon and sun referred to the cen-
ter of the earth,

1 015 01y &1, = the same quantmes referred to the point 0

4 = sun’s declination,

a = difference of rlght ascens1ons of' the moon and sun,

If h=10° H=10°d= 40°,p = 60' (whlch is far- from bemg an
extreme case,) we find E=—10"4. In the extreme case to which, ac-
cording to the arrangement of RAPER’s tables and rules, the method may
be extended, — namely, h =15°, H= 5°,d =13°, p = 61/ 30", — the

refraction being at a mean, we find E = — 43" ; and since we may sup-
pose the refraction to be increased by as much as one sixth of its amount,
we may even have E = — 50/".

Bowpircu’s ¢ First Method >’ is more accurate as to the formula, in-
cluding one term more of the above development, but, being adapted for
use only upon the supposition of a mean state of the air, is subject to
even greater errors than the method just examined.

* For the sake of completeness I have thought it proper to treat of this
correction fully ; but the method followed, it need hardly be observed,
is not new in principle, although it is not at present in use among navi-
gators.
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then we have the known formulas

. a &2 sin @
4= A )
g1cosd =opcosd } (4)
g1 sin 8, =g¢sin §4ai )
whence, very nearly,
oo=—¢ + aisind (5)

I

. a @ ai sin 8\ —1
sin m = — —(1
! Q1 Q ( + Q

=‘-3-sinn (1 — 4 sin & sin § 4 &e.)

or, with extreme accuracy, .
a &2 sin? o sin ¢ sin 8
M=, — — —

a sin 1

The maximum value of the last term is only 0”.2, so that in
the present application we may take
4

T =T —
1 a

.

and the correction of _

. a—a
Ty — T = T ———
may be given in a small table with the arguments ¢ and .
The similar correction of the sun’s or a planet’s parallax is in-
sensible in practice.

If, then, in the computation of (A), (B), and (C), we em-
ploy for p the value p =— =, we obtain d;. To reduce ﬁnaily
to the center of the earth, we have

cos d' = sin 4 sin § - cos 4 cos § cos:x}
cos d, = sin 4 sin §; 4 cos 4 cos 9, cos «
from which combined with (4) we find

g cosd — g cos d; — —aisin 4

(6)

or by (5) )
cos d' — cos d, = fe_’ (sin § cos d; — sin 4)
2sin} (d'+-d,) sin} (d'—d,) = isin z (sin 4 —sin § cos d;)
and with great accuracy for our preseni purpose,
i sin §
tan d;

i sin A
sin dl

& —d =

(D)

a formula easily put into tables, especially if we employ a mean
value of # which will never produce an error of more than
about 1”. If any one, however, desires to compute this cor-
rection directly, it may be done by the formula
sin A

—— —Nazasing.
sin d; P

sin §

d—di=Nnasngp. P
1

(D¥)
in which
&2

A/ (1— &2 sin? @)
and we may employ without sensible error the value of IV cor-
responding to ¢ = 45°, or log N = 7.8170, the compression
being 3.

The computation of this correction would be rendered at
once simple and accurate in practice, if the ephemeris con-

tained the log of
N (sin A sind

N =

= N/

sin &’ tan &’

(which is equivalent to a logarithm introduced by BesseL into
his ephemeris for the same purpose), for we should then have

d'—d, = N'sin ¢. (7)
Iv.

Corrections for the Contraction of the Moon’s and Sun’s
Semidiameters by Refraction.— The apparent distance of the
centers of the moon and sun has been supposed above to have
been found in the usual manner from the observed distance of
the limbs, by adding the apparent semidiameters ; or when the
moon has been observed with a planet or star, by adding or
subtracting the moon’s semidiameter alone, according as her
nearest or farthest limb has been observed. At low altitudes
the elliptical figure of the disc must be taken into consideration ;
for the refraction being different at points of the limb which

| have different altitudes, the result is an"apparent ¢ontrattion of

every semidiameter, the vertical ones being the most, and those
perpendicular to the vertical the least contracted.* It becomes
necessary to obtain a general expression for the contraction of
that semidiameter which lies in the direction of the distance,
and makes an angle ¢ with the vertical circle. If we put

s = horizontal semidiameter of the moon - the augmenta-

tion,
s, = the apparent vertical semidiameter,
s = « inclined “ oo
4 s, = contraction of vertical “ = s—8
48 = “ inclined ¢ =s—gs
4 r = difference of refractions at the center of the moon and

the observed point on the limb,
we have nearly 4s' = drcosgq.

But the apparent altitude of the center being &, 4 s, is the
difference of refractions at the apparent altitudes & and & -~ s,
while 4 r is the difference of refractions at 4 and A s’ cos ¢,
whence

Asy:dr =38,:8 cosq
dr = Sio . Adsycos g = 430 cos ¢ (nearly)
ds = ds,cos® q (8)
a known formula, which agrees very nearly with the hypothe-
sis that the figure of the disc is an ellipse. It is evident, how-
ever, that the lower half of the disc is more flattened than the
upper half; but if 45, be taken as the mean of the contrac-

* Tt is usually stated that the semidiameter which is perpendicular to
the vertical circle is not contracted ; but in fact it is contracted by a small
quantity, which is nearly the same at-all altitudes; for if Z denote the
azimuthal angle between the center and the extremity of a horizontal
semidiameter, s the true and s/ the apparent horizontal semidiameter, we
have

R

tan g tan

tan Z = ——— =
cos (h—1) cos

>

whence we easily deduce

s—s' =5 rsin 1/ tan h = ' k sin 1
in which k£ = r tan k is nearly constant. Ifs=16" we have for b = 5°,
s—s/ = 01"24; and for kb = 90° s —s'=0"".27. This small quantity
is not taken into account in the investigation in the text.
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tions of the upper and loweér vertical semidiameters, the pre-
ceding formula will be in error only 0.4 at the altitude 10°,
and 17.2 at 5°; the maximum values of A s, at those altitudes
being respectively 10” and 30”. The changes of the ther-
mometer and barometer may also sensibly affect the value of
4 s, at low altitudes, but only by 4” in the improbable case of
the highest barometer and lowest thermometer, and h =5°. It
will hardly be necessary to attend to this small error in prac-
tice ; nevertheless, it can readily be done without any further
reference to the refraction tables, for the computer will already
have before him 7,/ the mean value of +/, and 4 7 the sum of
the corrections of 7, for barometer and thermometer; so that
he may find at once the proportional correction of 4 s, which
Arl

iSAS,.—,—.
o

~ New the angle ¢ is given by the formula. .

sin H—sin A cos d

cos ¢ = -
9 cos & sin d

and we have from the formulas (A)

B — sin H A _sinlzcosd
B(p—17)cosh™  coshstnd’ A (p—+r)cosh” coshsind’
so that

B A 1

csqg=—(>2o 4" )—— .
q (.B + A) (p—r') cos h
If we assume A =1, B =1, we shall have
. A4 B!

cosg=— (p—7') cos

(A'4- B2

/, — R N SR
A=A ek (E)

which is easily put into tables. A table with the arguments &
and p — r’ may give the value of
Asy .
(p—7")2cos? &

and a second table with the arguments 4’ B’ and ¢ the num-
ber from the first table ” may give 4 s'.

In order to ascertain the degree of accuracy of the formula
(E)), we observe that the errors in cos ¢ produced by taking
A=1, B=1,are

_ tan A ;o sin H
e=(4—1) tand °’ ¢ = (1—B) cos h sind ’

e errors in cos® ¢ a
th r's 2 g are

2ecos g and 42e’cosq

and the errors in 4 s’ are therefore
__2Asy(A—1)tan hcosgq e/_QAso(l—B)sianosq
6= tan d [ cos h sin d :

The greatest values of ¢, and e/ at different altitudes are’
shown as follows, taking cos ¢ =0, H = 90°, in order to rep-
resent the extreme cases: —

h e tan d
5° 0".45

e/ sin d

0".02

29
h e tan d e’ sin d
10° 0".16 0"7.00
15 .08 .00
30 .02 .00
50 .00 .00

It appears, therefore, that the error of the formula (E), like
that of (8), becomes sensible only at those low altitudes where
extreme precision i$ unattainable on account of the uncertainty
of the refraction. We may therefore safely employ it as suffi-
ciently accurate for all cases. ,

When the sun is observed with the moon, a similar correc-
tion must be applied to his semidiameter. If

Q = angle at the sun,
S = true semidiameter of the sun,
8§, = apparent vertical semidiameter of the sun,

S'= “  inclined Y “
4 S, = contraction of vertical semidiameter = S— &,
48 = “ inclined “ =S—9,

then as above
A48'= 485, cos* Q
sin h —sin Hcosd __ 9’+'2’ 1
cos H sin d C "D )(R—P)cosH

and assuming C =1, D =1, we have
c'4-D
(R—P)cos H

Cc' -+ D
ey T (F)
which is even more accurate than (E), and is put into tables
in the same manner.

The corrections 4s' and 4 S’ should strictly be applied to
the semidiameters, and should appear in the value of d em-
ployed in the computation of 4 d; but since the values of A4,
B, €', and D' are required in finding 4 s’ and 4 S’, we have
to employ a value of d which may in extreme cases be in error
by about 30”. This produces a small error in each of the
terms A4/, B/, ¢, D', which could in practice be eliminated
only by repeating the computstion with the corrected value of
d. But this repetition is unnecessary, as the error in 4 d is
rarely more than 07.5; and it will suffice to apply 4 s’ and 4 S’/
directly tod,. o B

In order, however, to show generally the effect upon 4 d of
small errors in d, let us differentiate the equation (C), regard-
ing the term z (of the second order) as constant, and taking
A=1,B=1,C=1, D=1 (which also amounts to consid-
ering terms of the second order as constant). We find
(p—7") (sin h—sin Hcos d) sin 1" 8 d

sin? d
P) (sin H—sin hcos d) sin 1" 8§ d
sin? d

cos Q=

cos Q@ =

48'=45,.

§4d =—

R —
4 ¢

or /

04d=—[(p—r')cos Qcos H— (R'— P) cos q cos k]

sin1”78d
sin d

(9)
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This formula shows at once that the maximum of § 4 d oc- | and at the same time p —7' and R/ — P have their greatest
curs when the two bodies are in the same vertical circle, the | values. In this position, we have d =k — H, and the formula
moon being the higher body ; for this condition gives cos ¢ = | for the maximum of § 4 d is therefore
—1, cos Q=1, so that the two terms obtain the same sign,

sin 17 §d

dodd=—[(p—r') cos H-+(R'—P)cos k] o7 .

(10)

The following table shows the maximum effect upon 4 d of | This table of exireme errors shows clearly enough that the
an error of 1’ in d, computed by formula (10), for the several | error arising from the neglect of 4 s' and 4 & in the value of
values of % and H; the least value of k— H (= d) being 20°. | d employed in computing 4 d, is too small to require any de-

A parture from the process already indicated. For the navigator

H |\ m855 7255 T 55° 65° | 75° | 85° | 90° must bear in mind that all observations at very low altitudes are
> ” ” P " ,, " " P subject to two principal sources of error ; — lst, the uncertainty
lg 36 gé %g }? %i }g }i }(1) of the refraction, which no process of calculation can elimi-
25 129 |20 \1:5 1311110 nate ; and 2d, the imperfect definition of the limb of the moon
35 26 118 | 14| 11| 1.0 or sun in the vicinity of the horizon. = If a method of computa-
45 22 | 15 | 1.2 | 1.0 tion involves only errors which in every case are less than
gg 18 %g ég these unavoidable errors, it satisfies the essential condition of

: : a good method.

FROM A LETTER OF PROFESSOR SAWITSCH, DIRECTOR OF THE ST. PETERSBURG
OBSERVATORY, TO THE EDITOR.

St. Petersburg, 1851, May 27.

AccoMPANYING this are some observations which I send for | parent positions of - the centers, at the time of their transit over
insertion in your Astronomical Journal. They give the ap- | the St. Petersburg meridian.

OPPOSITION OF SATURN, 1849.

Date. he Obs. — Naut. Alm. hd Obs, — Naut. Alm. Comparison-Stars.
1849. h. . . 3 ’ " "
Sept. 24 021 4423 4124 —0°31'30'4 440’5 83 Piscium
2 211033 1.68 35 18.7 38.9 and
Oct. 3 19 10.18 1.26 48 23.2 36.5 20 Ceti.
6 0 18 19.62 +1.60 —0 53 47.6 4385

The observed declinations are freed from the effects of parallax and refraction.

OPPOSITION OF URANTUS, 1849.

Date. - - de Obs. — Naut., Alm._ b6 Obs. — Naut. Alm. - Comparison-Stars.
1849. h, m s s. o 1 1"
Oct. 3 1 32 55.63 —10.33 +9 4 3.6 +16.8 w Piscium and
15 131 7.07 —10.18 48 53 30.8 “+11.1 v Piscium.

The observed declinations are freed from the effects of parallax and refraction.

MARS, 1849.

Date. Qo Obs. — Naut. Alm. 2é Comparison-Stars.
1849. h. . . 8. r_n
Dec.21 5 37 19.89 4185 +26 30 140 125 Tauri,
23 33 58.94 1.95 31 0.1 gand 118 Tauri,
26 529 9.98 +1.56 42629 8.4 gand 118 Tauri.

The observed declinations are corrected for refraction only ; no regard having been had to the effect of parallax.
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