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Sunrise, sunset, 

Sunrise, sunset, 

Swiftly fly the years, 

One season following another, 

Laden with happiness and tears. 

 

What words of wisdom can I give them . . .? 

 

(Lyrics from “Sunrise, Sunset,” Fiddler on the Roof, 1964) 

 

 

The Sun rises and sets through the seasons.  Days are shortest in the winter and longest in 

the summer.  How might we calculate the length of a day—any day—of the year here on 

planet Earth? 

 

In this write-up, I provide two methodologies for calculating daylength: 

 

 Rectangular Coordinate-Based Analysis:  This calculation relies on little more 

than logical thinking and high school-level algebra and (plane) trigonometry.  The 

analysis is “simple” but the algebra is somewhat cumbersome, requiring a 

modicum of patience to work through the details. 

 Spherical Trigonometry “Coordinate-Free” Formulation:  This methodology 

relies on a theorem from spherical trigonometry, specifying how the parts of a 

triangle lying on the surface of a sphere relate to one another.  The analysis adopts 

the geometrical framework used by astronomers and readily produces the desired 

solution.  

 

My objective is to display the power of both simple and more sophisticated analysis.  The 

former provides an example of what can be accomplished by diligently employing only 

basic mathematical techniques, while the latter exhibits a type of coordinate-free 

“elegance” best appreciated after having slogged through the lengthier coordinate-based 

analysis. 

 

Earth-Sun System in Rectangular Coordinates 

 

Consider the Earth-Sun plane within which both the Earth and the Sun reside.  The 

diagram below shows the solar-centric Copernican viewpoint, with the Earth revolving 

about the Sun, passing through its four seasons demarcated for northern hemisphere by 

the winter solstice (approximately December 21), vernal equinox (March 21), summer 

solstice (June 21) and autumnal equinox (September 21).  The seasons, of course, are (by 

north-south symmetry) reversed for southern hemisphere locations. 
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Instead of following Copernicus by taking the Sun to be stationary, we can alternatively 

take an Earth-centric viewpoint with the Sun revolving about the Earth.  Define 

rectangular coordinates with the Earth and Sun in the horizontal xy-plane, such that the 

positive x- and y-axes point away from the Sun in the direction of the winter solstice and 

vernal equinox, respectively, and the positive z-axis points vertically upward 

perpendicular to the Earth-Sun plane.  In this set-up, the Earth’s tilt (about 23.5º) is the 

angle between the z-axis and the direction of polar north of the Earth, conceptually 

equivalent to a one-time 23.5º rotation of the Earth (centered at the origin) about the y-

axis. 

 

Now, day and night occur because the Earth rotates once every 24 hours about its north-

south polar axis.  Since the Sun illuminates the “front” hemisphere of the Earth’s surface 

facing the Sun at any given moment, while the Earth’s “back” hemisphere is dark, 

consider the day-night plane oriented perpendicular to the Sun’s rays reaching the Earth’s 

surface.  At the winter solstice, this day-night plane is the yz-plane (x = 0).  As days pass 

in the calendar year, this plane gradually rotates about the z-axis, so that at the time of the 

vernal equinox it becomes aligned with the xz-plane (y = 0).  The diagram below shows 

the position of the day-night plane on a calendar day occurring between the winter 

solstice and vernal equinox. 
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To keep track of time during the calendar year, define T as an angle in the xy-plane 

representing the amount of rotation of the day-night plane away from its winter solstice 

position, so that T = 0º (plane x = 0) at the winter solstice, increasing to T = 90º (plane y 

= 0) at the vernal equinox.  Generally, the equation of the day-night plane is 

 

tan T = -x/y.        (Eqn. 1) 

 

Note that z does not appear in this equation because the day-night plane is always 

perpendicular to the xy-plane.  This equation effectively parameterizes the rotation of the 

day-night plane as a function of T between 0º and 360º.during the full calendar year. 

 

Next, because daylength is determined by the intersection of circles of constant latitude 

on the Earth’s surface with the day-night plane, we need to find the equations 

representing these circles. (To be precise, between sunrise and sunset on any given day, 

the day-night plane rotates slightly, which impacts daylength by up to one part in 365, or 

about 0.3%.  For the purposes of the present calculation, we will consider this to be a 

secondary effect small enough to ignore.) 
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In a “tilted” reference frame (denoted by upper case rectangular coordinates X, Y and Z) 

with the Z-axis aligned in the direction of polar north, circles of constant latitude are 

given by the familiar equation for a circle, situated at the appropriate height Z above or 

below the XY-plane: 

 

X2 + Y2 = r2 = (R cos φ)2,  -90º ≤ φ ≤ 90º,    (Eqn. 2a) 

Z = R sin φ,        (Eqn. 2b) 

 

where r is the radius of the circle, R is the radius of the Earth (assumed to be a perfect 

sphere), and φ is the latitude (ranging from -90º at the South Pole to 90º at the North 

Pole).  An example of such a circle is shown at the left of the diagram below. 

 

 
 

In order to return to our original “untilted” reference frame (denoted by lower case x, y 

and z), we need to rotate the X- and Z-axes clockwise about the Y-axis through the tilt 

angle θ.  With a general point in the untilted reference frame represented in polar 

coordinates as (x, z) = (s cos α, s sin α), the corresponding values of the tilted (X, Z) 

coordinates (see right side of above diagram) are 

 

X = s cos(α + θ) = s cos α cos θ - s sin α sin θ = x cos θ - z sin θ 

Z = s sin(α + θ) = s sin α cos θ + s cos α sin θ = x sin θ + z cos θ. (Eqn. 3) 

 

Therefore, by substituting these expressions for X and Z into Eqns. 2a and 2b, and using 

Y = y (since y values are invariant in the rotation), we arrive at 

 

(x cos θ - z sin θ)2 + y2 = r2 = (R cos φ) 2,  -90º ≤ φ ≤ 90º,  (Eqn. 4a) 

x sin θ + z cos θ = R sin φ      (Eqn. 4b) 

 

for the tilted circles of constant latitude in our original untilted (x, y, z) reference frame. 
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Intersection of Day-Night Plane and Tilted Circles of Constant Latitude 

 

To find the intersection of the tilted circles of constant latitude with the day-night plane, 

we simultaneously solve Eqn. 1 and Eqns. 4a and 4b.  By Eqn. 1, 

 

y = -x cot T.        (Eqn. 5) 

  

Also, by Eqn. 4b, 

 

z = (-x sin θ + R sin φ)/cos θ.      (Eqn. 6) 

 

Substitution of these expressions for y and z into Eqn. 4a gives 

 

[x cos θ - (-x sin θ + R sin φ) tan θ]2 + x2 cot2T  = R2 cos2φ. 

 

Collecting terms by like powers of x and simplifying, we have 

 

[(cos θ + sin2θ/cos θ) x - R tan θ sin φ]2 + cot2T x2 = R2 cos2φ 

[sec2θ + cot2T] x2 - (2R sec θ tan θ sin φ) x + R2 (tan2θ sin2φ - cos2φ) = 0 

[sec2θ + cot2T] x2 - (2R sec2θ sin θ sin φ) x + R2 (sec2θ sin2φ - 1) = 0 

[1 + cos2θ cot2T] x2 - (2R sin θ sin φ) x + R2 (sin2φ - cos2θ) = 0. 

 

Defining the dimensionless variable 

 

u = x/R,        (Eqn. 7) 

 

we can rewrite the prior equation as 

 

(1 + cos2θ cot2T) u2 - (2 sin θ sin φ) u + (sin2φ - cos2θ) = 0, 

 

which is quadratic in u and has solutions 

 

u1,2 = {sin θ sin φ ± [sin2θ sin2φ – (1 + cos2θ cot2T)(sin2φ - cos2θ)]1/2}/(1 + cos2θ cot2T). 

          (Eqn. 8) 

 

We can also rewrite y and z from Eqns. 5 and 6 in terms of the dimensionless variables v 

and w, respectively, 

 

v = y/R = -u cot T,       (Eqn. 9) 

w = z/R = (-u sin θ + sin φ)/cos θ,     (Eqn. 10) 

 

which are both now expressed in terms of u. 
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Daylength 

 

Given that we have now determined the two points P1 = (x1, y1, z1) and P2 = (x2, y2, z2), 

where any particular circle of constant latitude intersects the day-night plane, we can 

proceed to calculate daylength. 

 

 
 

The diagram above shows a circle of constant latitude viewed from polar north.  The 

(linear) distance between P1 and P2 is 

 

 D = [(x2 – x1)
2 + (y2 – y1)

2 + (z2 – z1)
2]1/2, 

 

or in terms of u, v and w, 

 

 d = D/R = [(u2 – u1)
2 + (v2 – v1)

2 + (w2 – w1)
2]1/2.   (Eqn. 11)  

 

As seen in the diagram, the angular distance between P1 and P2 can be determined by the 

relation 

 

sin(γ/2) = (D/2)/(R cos φ) = d/(2 cos φ).    (Eqn. 12) 

 

Therefore, based on the convention of a 24-hour day, daylength becomes 

 

 daylength = γ (24 hours/360º) 

     = 2 arcsin(d/(2 cos φ)) (24 hours/360º).   (Eqn. 13) 

 

with γ (hence also the value of the arcsin function) taken to be in degrees. 

 

This result can be expressed in terms of the observables θ, φ and T through an exercise in 

algebra.  Using Eqns. 8, 9 and 10 in Eqn. 11, we have 

 

d2 = (1 + cot2T + tan2θ) (u2 – u1)
2 
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     = (1 + cot2T + tan2θ)  

• 4 [sin2θ sin2φ – (1 + cos2θ cot2T)(sin2φ - cos2θ)]/(1 + cos2θ cot2T)2 

     = (1 + cos2θ cot2T)/cos2θ 

• 4 [(1 - cos2θ) sin2φ – (1 + cos2θ cot2T)(sin2φ - cos2θ)]/(1 + cos2θ cot2T)2 

     =  4 [(1 - sin2φ) – cot2T (sin2φ - cos2θ)]/(1 + cos2θ cot2T)  

     =  4 cos2φ [1 + cot2T (1- sec2φ (1 - cos2θ))]/(1 + cos2θ cot2T)  

     =  4 cos2φ [1 + cot2T (1- (1 + tan2φ) sin2θ)]/(1 + cos2θ cot2T)  

     =  4 cos2φ [1 - tan2φ sin2θ cot2T/(1 + cos2θ cot2T)] 

     =  4 cos2φ [1 - tan2φ sin2θ cos2T/(1 - sin2θ cos2T)].   (Eqn. 14) 

 

By rewriting Eqn. 12 in the form 

 

sin2(γ/2) = 1 – cos2(γ/2) = d2/(4 cos2φ), 

 

we can read off from Eqn. 14 the relationship 

 

cos(γ/2) = ± tan φ sin θ cos T/(1 - sin2θ cos2T)1/2 

    = -tan φ tan δ,      (Eqn. 15) 

 

where we define the parameter δ through 

 

sin δ = ± sin θ cos T.       (Eqn. 16) 

 

Therefore, using Eqn. 15, we may rewrite daylength in Eqn. 13 as 

 

 daylength = γ (24 hours/360º) 

     = 2 arccos(-tan φ tan δ) (24 hours/360º).   (Eqn. 17) 

 

Note that daylength is now expressed entirely in terms of φ and δ, with δ related to θ and 

T through Eqn. 16. 

 

Understanding Declination 

 

We can understand the physical meaning of the parameter δ by referring to the diagram 

below displaying the relationship between the equatorial plane (tilted with respect to the 

Earth-Sun plane) and the line in the Earth-Sun plane from the center of the Earth directly 

to the Sun. 
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Based on our discussion of the tilted coordinates (X, Y, Z), the equation for the equatorial 

plane (Z = 0) is determined by setting Z = 0 in Eqn. 3 to arrive at 

 

z = (-tan θ) x.        (Eqn. 18) 

 

Secondly, the line in the xy-plane (with z = 0) pointing from the center of the Earth to the 

Sun is perpendicular to the day-night plane given by y = (-1/tan T) x in Eqn. 1, and 

therefore has slope tan T (which is the negative multiplicative inverse of -1/tan T) and 

equation 

 

y = (tan T) x.        (Eqn. 19) 

 

The angle between the equatorial plane and the line to the Sun is called the declination of 

the Sun.  One way to determine this angle is to pick a point A on the line (other than the 

origin) and then to drop a line segment (perpendicular to the plane) to a point B in the 

plane, which can be accomplished by minimizing the distance from A to B.  The resulting 

angle AOB will be the declination of the Sun.  See diagram below. 
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Utilizing Eqns. 19 and 18, respectively, we can write the coordinates of A and B as 

 

A = (xA, yA, zA) = (xA, (tan T) xA, 0)     (Eqn. 20a) 

B = (xB, yB, zB) = (xB, yB, (-tan θ) xB)     (Eqn. 20b) 

 

Then, line segment AB has length 

 

f(xB, yB) = [(xB - xA)2 + (yB - (tan T) xA)2 + ((-tan θ) xB)2]1/2, 

 

which is a function of two variables, xB and yB. 

 

To minimize f, we set the two partial derivatives to zero 

 

∂f/∂xB = [2 (xB - xA) + (2 tan2θ) xB]/(2f) = 0 

∂f/∂yB = [2 (yB - (tan T) xA)]/(2f) = 0, 

 

which implies 

 

xB = xA/(1 + tan2θ) = (cos2θ) xA     (Eqn. 21a) 

yB = (tan T) xA.       (Eqn. 21b) 

 

Due to the simple geometry of a plane pierced by a line, this single extremum of f is 

clearly a minimum. 

 

By combining Eqns. 20 and 21, we can write 

 

A = (xA, (tan T) xA, 0) 

B = ((cos2θ) xA, (tan T) xA, (-sin θ cos θ) xA). 

 

Then, 

 

sin(angle AOB) = (length of AB)/(length of OA) 
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     = [sin4θ + sin2θ cos2θ]1/2/[1 + tan2T]1/2 

     = [sin2θ]1/2/[sec2T]1/2 

     = ± sin θ cos T.      (Eqn. 22) 

 

Comparison of Eqn. 22 to Eqn. 16 reveals that our earlier parameter δ is equal to angle 

AOB.  In other words, δ is precisely the declination of the Sun. 

 

Coordinate-Free Formulation on the Celestial Sphere 

 

The same problem of calculating daylength can be solved in a coordinate-free context by 

carefully examining relevant great circles of the celestial sphere having an observer 

located at its center (see diagram below): 

 

 Observer’s Horizon:  This great circle lies in the horizontal plane of the observer, 

allowing for definition of the benchmark navigational directions:  north (N), south 

(S), east (E) and west (W). 

 Observer’s Meridian:  The observer’s meridian is perpendicular to the 

observer’s horizon and passes through all of the following points:  observer’s 

zenith (point directly overhead), observer’s north (N), observer’s south (S), the 

North Pole (NP) and the South Pole (SP)—all projected onto the celestial sphere. 

 Sun-Zenith Circle:  The observational position of the Sun in the sky defines the 

great circle passing through the Sun’s projection onto the celestial sphere and the 

observer’s zenith.  This great circle is also perpendicular to the observer’s horizon. 

 Celestial Equator:  Projection of the Earth’s equator onto the celestial sphere 

gives the celestial equator, which lies in the plane perpendicular to the polar line 

defined by the North Pole and the South Pole. 

 Sun-North Pole Hour Circle:  The great circle passing through the projections of 

the Sun and the North Pole (and the South Pole) onto the celestial sphere is 

perpendicular to the celestial equator.  This great circle is called the hour circle of 

the Sun. 
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Using these great circles, we now focus attention on the nautical triangle sitting on the 

surface of the celestial sphere, defined by the three vertices:  observer’s zenith, North 

Pole and Sun.  The sides of this triangle have lengths that can be expressed by angular 

measures: 

 

 Side from Zenith to North Pole:  The angle between projections of the 

observer’s due north (N) and the North Pole (NP) onto the celestial sphere—being 

0º when the observer is situated on the Earth’s equator and reaching 90º in the 

limit as the observer approaches the North Pole—is equal to the observer’s 

latitude φ.  Also, the angular distance between the observer’s due north and the 

observer’s zenith is 90º.  Therefore, the length of the side from zenith to NP is the 

difference 90º - φ.   

 Side from North Pole to Sun:  The angle between the celestial equator and the 

Sun is the Sun’s declination δ.  Also, the angle between the celestial equator and 

the projection of the North Pole is 90º.  Therefore, the length of the side from NP 

to the Sun is 90º - δ. 

 Side from Sun to Zenith:  The angle between the observer’s horizon and the Sun 

is the Sun’s altitude h.  Also, the angle between the observer’s horizon and zenith 

is 90º.  Therefore, the length of the side from Sun to observer’s zenith is 90º - h. 
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As can be seen in the diagram above, the angle at the North Pole vertex NP runs along 

the celestial equator between the observer’s meridian and the Sun-North Pole hour circle.  

Call this angle t. 

 

With the necessary parts of the triangle now defined, we invoke a well-known formula 

from spherical trigonometry, analogous to the law of cosines in plane trigonometry.  

(Incidentally, proof of the spherical trigonometry result, called the “spherical law of 

cosines,” follows directly from appropriate application of the more familiar plane 

trigonometry law of cosines.)  The geometry is shown in the diagram below. 

 

 
 

The spherical law of cosines states that for any triangle on the surface of a sphere, such 

that sides a, b and c all lie on great circles, and angle C is subtended by side c, 

 

cos c = cos a cos b + sin a sin b cos C. 

 

As displayed in the diagram, application of the spherical law of cosines to our zenith-NP-

Sun triangle gives 

 

cos (90º - h) = cos (90º - φ) cos (90º - δ) + sin (90º - φ) sin (90º - δ) cos t, 

 

which can be re-expressed as 

 

sin h = sin φ sin δ + cos φ cos δ cos t.    (Eqn. 23) 

 

Now, because we are interested in calculating daylength, we set h = 0 in Eqn. 23, 

corresponding to zero altitude for the Sun at both sunrise and sunset.  Then, after 

rearranging, we have 

 

cos t = -tan φ tan δ,       (Eqn. 24) 

 

which is called the “sunrise equation.” 

 

Referring back to Eqn. 15, we identify t as being equal to γ/2.  The physical meaning of t 

is that it represents the angular time (with 24 hours equivalent to 360º) from sunrise to 

local solar noon (when the Sun reaches its culmination point in the sky), which by 
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symmetry also equals the time from local solar noon to sunset.  In other words, daylength, 

which is defined as the time from sunrise to sunset, equals 2t. 

 

Therefore, using Eqn. 24, we may write 

 

 daylength = 2t (24 hours/360º) 

     = 2 arccos(-tan φ tan δ) (24 hours/360º),   (Eqn. 25) 

 

which is the same as Eqn. 17. 

 

Arguably, this geometrical coordinate-free analysis is more elegant than the algebra-

intensive coordinate-based approach pursued earlier.  However, in my opinion, the 

advantage of adopting the more sophisticated geometry and spherical trigonometry on the 

celestial sphere must be weighed against an incumbent trade-off—namely, a masking of 

the solar-centric Copernican framework with its intrinsically simpler “flat” geometry of 

lines, planes, and circles (although tilted they may be!). 

 

Example:  Calculated vs. Actual Daylength 

 

Recall from Eqn. 15 that 

 

tan δ = ± sin θ cos T/(1 - sin2θ cos2T)1/2. 

 

Therefore, we may write daylength in Eqn. 17 or Eqn. 25 as 

 

daylength = 2 arccos(sin θ tan φ cos T/(1 - sin2θ cos2T)1/2) (24 hours/360º), 

. 

choosing the positive sign inside of the argument of the arccos function, to match the 

proper relationship between season or time of year (T), the Sun’s declination (δ) and 

daylength for northern hemisphere locations: 

 

T = 0º (winter solstice) → 90º (vernal equinox), δ < 0, daylength = 0 → 12 hrs. 

T = 90º (vernal equinox) → 180º (summer solstice), δ > 0, daylength = 12 → 24 hrs. 

T = 180º (summer solstice) → 270º (autumnal equinox), δ > 0, daylength = 24 → 12 hrs. 

T = 270º (autumnal equinox) → 360º (winter solstice), δ < 0, daylength = 12 → 0 hrs. 

 

Using the Earth’s tilt angle of θ = 23.5º and Seattle’s latitude of φ = 47.6º, we can plot 

daylength as a function of time of year T.  (Note:  Seattle (pop. 700,000) is of interest 

because among major U.S. cities it is the northernmost, giving it the broadest range of 

daylength.)  The graph below shows how our calculated values correspond to “actual” 

values (available at timeanddate.com and presumably also calculated based on a formula) 

for the one-year period from December 21, 2015 to December 21, 2016. 
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The actual values are systematically about 2% larger than our calculated values.  This 

discrepancy arises because our calculation does not correct for secondary effects such as 

the size of the Sun (timeanddate.com defines sunrise and sunset as the times when the 

upper edge (not the center) of the Sun’s disc touches the horizon) combined with 

atmospheric refraction occurring when sunlight encounters air rather than the virtual 

vacuum of outer space. 

 

Refraction bends rays of the Sun as they pass through the Earth’s atmosphere.  This 

bending is towards the Earth, making sunrise a little earlier and sunset a little later than 

would occur in a vacuum.  Therefore, actual daylight hours are a little longer than they 

would be if both the Sun were a point of light (rather than a fiery ball with spatial extent) 

and our Earth had no atmosphere. 

 

We could go on to improve our calculation by accounting for such secondary effects, but 

since our present calculation has already run on for more than a daylength, let’s leave 

such fiddling for some other day. 

 


