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1	Problem	Statement	
The	polar	reduction	formula	takes	an	observer's	assumed	position	(lat,	lon),	and	a	
body's	celestial	coordinates	(declination,	local	hour	angle)	and	finds	the	altitude	and	
azimuth	of	the	body:	

	

€ 

r,θ = pol tandec cos lat − sin lat cos lha, − sin lha( )
Hc = cos−1 rcosdec( )
Zn = θ mod 360°

	 	 	 	 (eq	1)	

In	the	following,	we	will	derive	this	result.	
	

2	Approach	
Computing	the	altitude	and	azimuth	of	a	body	from	its	declination	and	local	hour	
values	may	be	viewed	as	translating	between	two	different	coordinate	systems.	We	
will	begin	by	specifying	the	two	spherical	coordinate	systems,	the	equatorial	and	the	
horizon	systems.		In	these	systems,	the	position	of	a	body	is	designated	by	angles	e.g.	
altitude	and	azimuth	for	the	horizon	system.	
Next,	we	introduce	rectangular	coordinate	systems	for	each	of	the	spherical	
systems.	We	do	this,	because	we	have	a	way	to	translate	coordinates	in	one	
rectangular	system	to	the	coordinates	in	another	rectangular	system.	
Finally,	we	translate	from	rectangular	coordinates	back	to	spherical	coordinates	in	
the	destination	system.	
In	summary,	we	will	do:	
	 spherical	equatorial	(dec,	lha)	→ rectangular	equatorial	(x,	y,	z)	→	
	 rectangular	horizon	(x',	y',	z'	)	→	spherical	horizon	(alt,	azimuth).	
	

3	Background:	Polar/Rectangular	Systems	in	2-D	

3.1	Introduction	
Before	proceeding,	we	will	discuss	the	two	dimensional	case	because,	first,	it	is	good	
background	for	the	three	dimensional	case,	and	second,	because	the	pol	function	
used	in	(eq	1)	transforms	2-D	rectangular	coordinates	to	polar	coordinates,	and	we	
will	want	to	know	some	details	about	it.	
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In	Figure	1,		point	A	is	designated	in	
polar	coordinates	by	1)	a	straight	line	
distance	from	the	origin	(0,	0),	and	2)	an	
angle	measured	positively	counter-
clockwise	from	the	horizontal	x-axis.		As	
shown,	A	has	polar	coordinates	

€ 

2 , 315°( )	or	

€ 

2 , − 45°( ).	That	is,	point	
A	is	a	distance	1.414	from	the	origin,	
and	rotated	315°	counter-clockwise	
from	the	positive	x-axis	(or	equivalently,	
-45°,	which	is	45°	clockwise).		We	note	
that	electronic	calculators	such	as	the	
CASIO	fx-300MS	or	TI-30X	restrict	the	
angle	to	the	range	[-180°,	+180°],	and	
thus	would	display	-45°	for	the	angle	of	
point	A.	

In	the	rectangular	coordinate	system,	point	A	is	1	unit	along	the	x-axis	and	-1	(i.e.	
"down")	along	the	y-axis,	and	thus	has	coordinates	(1,	-1).		By	convention,	the	x	
value	always	goes	first,	and	the	y	value	second	in	the	(x,	y)	coordinate	pair.	
	

3.2	Polar	to	Rectangular	Conversion	

	

€ 

r,θ( ) → x,y( )

x = rcosθ
y = rsinθ

	 	 (eq	2)	

When	doing	this	conversion,	calculators	will	accept	any	angle,	not	just	those	
between	negative	180°	and	plus	180°.			We	usually	restrict	r	to	positive	values	(a	
distance	from	the	origin),	but	(-r,	θ)	may	be	interpreted	as	(	|r|,	θ +180).	

3.3	Rectangular	to	Polar	Conversion	
Given	the	(x,	y)	coordinates,	the	distance	from	the	origin	
immediately	follows	from	the	Pythagorean	Theorem.		By	
definition,	the	angle	is	between	the	position	vector	and	the	
x-axis;	and	the	tangent	of	the	angle	is	the	opposite	side	y	
divided	by	the	adjacent	side	x.		However,	to	ensure	the	
angle	is	in	the	range	-180°	to	+180°,	we	apply	the	rules	as	
shown.		The	first	step	is	to	use	the	absolute	value	of	y/x,	i.e.	
a	positive	number,	and	then	use	the	signs	of	x	and	y	to	
adjust	the	result.	
The	reason	we	are	going	into	such	detail	is	to	examine	
what	occurs	if	we	swap	the	x	and	y	coordinates,	a	trick	we	

will	use	below	in	our	derivation	of	(eq	1).	

Figure	1	

(eq	3)	
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3.4	Polar	Conversion:	swapping	x	and	y	
Assume	we	use	a	CASIO	calculator,	and	enter	the	(x,	y)	
values	in	the	opposite	order:	pol(y,	x).		Per	(eq	3),	the	r	
value	will	be	computed	correctly,	as	the	order	of	x	and	y	
does	not	matter.		However,	the	angle	is	a	different	story.		
The	angle	α	in	(eq	3)	is	formed	by	the	y-axis	and	the	
position	vector,	and	is	computed	as	the	inverse	tangent	of	
opposite	side	x	divided	by	adjacent	side	y.		This	is	shown	
in	Figure	2.			
Now	when	we	apply	the	rules	(remembering	x	and	y	are	swapped),	we	find	θ=135°,	
which	is	the	angle	measured	clockwise	from	the	positive	y-axis.		We	take	note	that	
this	is	how	we	measure	azimuth,	clockwise	from	due	north,	with	the	difference	that	
azimuth	is	measured	continuously	clockwise	from	0°	to	360°	and	angle	θ is	negative	
(i.e.	measured	counter-clockwise	from	the	positive	y-axis)	for	angles	greater	than	
180°.		We	will	fix	this	"bug"	by	adding	360°	to	negative	θ	to	bring	it	into	our	desired	
range.		But	we	are	getting	ahead	of	ourselves.	Let's	now	introduce	the	3-D	spherical	
coordinate	systems.	
	

4	Two	Spherical	Coordinate	Systems	

4.1	Equatorial	Coordinate	System	
In	this	system	(see	Figure	3),	the	origin	is	at	the	
center	of	the	earth,	the	x-y	plane	lies	in	the	plane	of	
the	equator,	and	the	earth	spins	about	the	z-axis,	
which	points	to	the	north	pole.			The	x-axis	lies	in	the	
equatorial	plane,	and	points	to	the	observer's	
meridian.	
The	spherical	coordinates	(usually	only	the	angles	are	given)	are:		

1. the	declination	(dec)	angle	above	(positive)	or	below	(negative)	the	
equatorial	plane	(equivalent	to	latitude);		

2. the	local	hour	angle	(lha),	measured	positively	westward	on	the	equator	
from	the	observer's	longitude,	0°	to	360°;	

3. distance	from	the	center,	which	is	understood	to	be	fixed	at	r=1.	
The	rectangular	coordinate	system	will	be	right-handed,	origin	at	the	center	of	the	
earth,	with	orthogonal	axes	that	point	in	the	given	directions:	

1. x-axis	-	points	at	the	intersection	of	the	observer's	meridian	and	the	equator;	
2. y-axis	-	lies	in	the	equatorial	plane	and	points	eastward	relative	to	the	

observer;	
3. z-axis	-	points	to	the	earth's	north	pole.	

	

Figure	3	

Figure	2	
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4.2	Horizon	Coordinate	System	
In	the	horizon	system	(Figure	4),	the	origin	is	at	
the	observer,	in	the	plane	of	the	horizon.		The	z-
axis	points	directly	overhead.	
The	spherical	coordinates	are:	

1. Altitude		(Hc)	-	the	angle	above	the	
horizon.		It	is	possible	to	measure	small	
negative	altitudes	due	to	refraction	of	the	
atmosphere;	

2. Azimuth	(Zn)	-	the	angle	measured	
clockwise	(or	eastward)	from	due	north,	
continuously	0°	to	360°;	

3. distance	from	the	observer,	which	is	fixed	
at	r=1.	

	
The	rectangular	system	will	be	right-handed,	origin	at	the	observer,	with	orthogonal	
axes:	

1. x-axis	-	points	east		
2. y-axis	-	points	north	
3. z-axis	-	points	directly	up	(the	zenith)	

	

4.3	How	the	Two	Coordinate	Systems	are	Related	
The	local	horizon	system	(Figure	5)		
is	the	plane	tangent	to	the	earth	at	the	
observer's	position,	with	its	x-axis	
pointing	east,	its	y-axis	pointing	
north,	and	its	z-axis	pointing	upward,	
perpendicular	to	the	plane.	The	angle	
L	between	the	z-axis	(zenith)	and	the	
plane	of	the	equator	will	be	the	
latitude	of	the	observer.		
When	converting	between	the	two	
systems,	we	will	assume	they	share	
the	same	origin	at	the	center	of	the	
earth.		This	perhaps	makes	more	
intuitive	sense	if	we	envision	the	
earth	the	size	of	a	marble,	in	which	

case	the	direction	to	some	star	does	not	measurably	change	if	we	move	to	the	center	
of	the	marble.		For	close	bodies,	the	moon	and	planets,	we	adjust	("correct")	our	
measurements	(taken	at	the	earth's	surface)	to	values	as	if	taken	at	the	earth's	
center.	

Figure	4	

Figure	5	
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5	Spherical	to	Rectangular	Coordinate	Transformation	

5.1	Rectangular	Coordinates	
The	three	rectangular	coordinate	values	(x,	y,	z)	are	
"instructions"	on	how	to	reach	a	point	when	starting	at	the	
origin.		They	specify	in	order,	the	distance	to	move	in	the	x	
direction	(a	negative	number	means	move	in	the	opposite	
direction	of	x),	in	the	y	direction,	and	in	the	z	direction,	as	
shown	in	Figure	6.			

5.2	Spherical	Equatorial	to	Rectangular	Equatorial	
Given	a	point	identified	by	spherical	coordinates	(dec,		lha)	
(see	Figure	3),	we	use	trigonometry	to	find	the	distance	to	
move	in	the	z	direction:	

	

€ 

sindec =
opposite
hypotenuse

=
z
1

= z 		 	 	 	 (eq	4)	

where	we	use	the	fact	that	the	distance	from	the	origin	to	the	point	is	assumed	to	be	
one.		Similarly,	the	length	of	the	projection	of	the	point	onto	the	x-y	plane	is	cos	dec.		
Now	analyze	the	triangle	formed	by	legs	along	the	x-	and	y-axes,	and	hypotenuse	of	
length	cos	dec.	

	

€ 

cos lha =
adjacent
hypotenuse

=
x

cosdec
⇒ x = cosdeccos lha 	 (eq	5)	

In	the	same	way,	we	find	the	distance	to	move	along	the	y-axis,	but	with	this	
observation,	the	direction	is	opposite	to	the	y-axis	positive	direction,	hence	the	
distance	is	negated:	

	

€ 

sin lha =
opposite
hypotenuse

=
−y

cosdec
⇒ y = −cosdec sin lha 	 (eq	6)	

Collecting	these	values	into	a	3	x	1	vector,	we	have	

	

€ 

Equatorial Spherical (dec,  lat) →  Rectangular (x,  y,  z)

p =
cosdec cos lha
−cosdec sin lha

sindec

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

	 (eq	7)	

	

5.3	Spherical	Horizon	to	Rectangular	Equatorial	
By	a	similar	process	to	the	previous	section,	we	have	(see	Figure	4):	 	

	

€ 

Horizon Spherical (Hc,  Zn) →  Rectangular (x,  y,  z)

q =
cosHc sinZn
cosHc cosZn

sinHc

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

	 (eq	8)	

Figure	6	
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6	Equatorial	Rectangular	to	Horizon	Rectangular	

6.1	Rotations	
The	next	step	is	to	find	the	rotation	matrix	that	takes	us	from	the	equatorial	
rectangular	system	to	the	horizon	rectangular	system	as	shown	in	Figure	7.		The	
mathematics	is	not	generally	taught	in	high	school,	so	I	provide	some	discussion	in	a	
separate	document.		We	find	the	rotation	matrix	to	be:	

	

€ 

B =
0 −sinL cosL
1 0 0
0 cosL sinL

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
		,	L=	latitude	of	the	observer	 (eq	9)	

and	consequently,	the	equation*	to	convert	equatorial	coordinates	to	horizon	
coordinates	is:	

	

€ 

q = BTp 	 	 	 	 	 	 	 (eq	10)	

where	p	are	the	rectangular	equatorial	coordinates,	and	q	are	the	corresponding	
rectangular	horizon	coordinates.	
Substituting	into	(eq	10)	the	definitions	of	(eq	7),	(eq	8),	and	(eq	9):	

	

€ 

cosHc sinZn
cosHc cosZn
sinHc

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=
0 1 0

−sinL 0 cosL
cosL 0 sinL

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

cosdeccos lha
−cosdec sin lha

sindec

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
	 (eq	11)	

Multiplying	out	(eq	11),	the	result	of	the	right-hand	side	are	the	rectangular	
coordinates	of	the	point	in	terms	of	the	horizon	system,	and	thus	must	equal	the	
same	coordinates	as	computed	using	the	spherical	coordinates	of	the	horizon	
system:	

	

€ 

cosHc sinZn
cosHc cosZn
sinHc

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=
−cosdec sin lha

cosLsindec − sinLcosdeccos lha
sinLsindec + cosLcosdeccos lha

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
	 (eq	12)	

In	(eq	12),	we	can	equate	corresponding	components,	and	in	particular,	we	note	
	

€ 

sinHc = sindec sinL + cosdec cosLcos lha 	 	 	 (eq	13)	
which	is	the	formula,	derived	from	spherical	geometry,	often	used	to	solve	for	the	
altitude	Hc.		However,	we	will	use	a	different	approach.	

																																																								
*	See	my	Rotation	Matrices	paper	for	details.	

Figure	7	



	 7	

7	Rectangular	Horizon	to	Spherical	Horizon	

7.1	Transformation	using	3-D	components	
Examining	the	rectangular	components	of	(eq	8),	we	see:	

	

€ 

q =
cosHc sinZn
cosHc cosZn
sinHc

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
⇒

x
y

=
cosHc sinZn
cosHc cosZn

= tanZn

z = sinHc

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
	 	 (eq	14)	

and	thus,	given	the	(x,	y,	z)	values,	we	can	compute	the	corresponding	spherical	
angles	Hc	and	Zn.	

7.2	Transformation	using	2-D	components	
Now	we	use	some	cleverness*	to	note	that	the	2-D	vector,	with	entries	(y,	x)	i.e.	the	
first	two	components	of	q,	but	swapped:	

	

€ 

v = cosHc cosZn
cosHc sinZn
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
	 	 	 	 	 	 (eq	15)	

has	some	interesting	properties.		Using	(eq	3)	to	convert	from	rectangular	to	polar	
coordinates,	we	find	that	the	length	is:	

	

€ 

r = x 2 + y 2 = cos2Hc cos2 Zn + cos2Hc sin2 Zn
r = cosHc cos2 Zn + sin2 Zn
r = cosHc

	 	 (eq	16)	

and	the	angle	is	

	

€ 

α = tan−1 y
x
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ = tan−1

sinZn
cosZn
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

α = tan−1 tanZn( ) = Zn
	 	 	 	 	 (eq	17)	

As	noted	in	Section	3.4,	swapping	the	x	and	y	components	of	the	q	vector	also	swaps	
the	"reference	axis"	from	x	to	y	(i.e.	to	the	horizon	axis	pointing	north)	and	the	
positive	angular	direction	from	counter-clockwise	to	clockwise	(due	to	the	sign	
rules	we	use).	
Once	we	have	this	nice	trick,	we	can	apply	it	to	the	transformed	vector	of	(eq	12).	
The	first	two	components,	swapped,	give	us	the	vector	of	(eq	15):	

	

€ 

v = cosLsindec − sinLcosdec cos lha
−cosdec sin lha

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
	 	 	 (eq	18)	

and	its	length	r=	cos	Hc,	and	its	angle	θ=	Zn.		(Remember		--	the	reader	may	verify	
this	with	calculation	--	the	vectors	of	(eq	12)	represent	the	same	point,	and	are	
numerically	equal).	

																																																								
*	I	am	using	Robin	Stuart's	result,		
http://fer3.com/arc/m2.aspx/Which-calculator-use-for-arctantan269-Stuart-feb-2017-g38110	



	 8	

7.3	A	simplification	
We	can	slightly	simplify	the	calculation	of	(eq	18)	by	factoring	out	cos	dec	from	each	
component	(note	tan	dec	=	sin	dec/cos	dec,	thus	sin	dec=	cos	dec	tan	dec),		

	

€ 

v = cosdec tandeccosL − sinLcos lha−sin lha
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
	 	 	 (eq	19)	

and	define	a	new	vector	w:	

	

€ 

w = tandec cosL − sinLcos lha
−sin lha

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
	 	 	 	 (eq	20)	

The	angle	of	w	remains	unchanged;	it	is	Zn	(in	the	range	-180°	to	+180°),	but	its	
length	must	be	multiplied	by	cos	dec	to	get	the	original	length	of	v.			
Equation	(eq	20)	represents	our	key	result.	
	

7.4	Ambiguity	of	the	Sign	of	the	Altitude	Hc	
This	approach	can	not	distinguish	altitudes	below	the	horizon,	e.g.	the	sun	at	
sunrise.		When	the	sign	is	not	certain,	the	observer	may	compute	the	altitude	in	the	
traditional	way,	with	(eq	13).		Another	way	is	to	examine	the	sign	of	the	z-
component	of	(eq	12),	or	after	factoring	out	cos	dec	(always	a	positive	term):		
	

€ 

tandec sinL + cosLcos lha 	 if	negative,	Hc	is	negative	 (eq	21)	
This	term	is	related	to	the	first	term	of	vector	w	(eq	20),	and	perhaps	can	be	
memorized:	

	 	 	 	 (eq	22)	 	
	 	 	 	 	 	

8	Conclusion	
From	(eq	20),	and	an	understanding	of	rectangular	to	polar	conversions	as	
implemented	by	a	scientific	calculator,	we	arrive	at	our	result:	

	 	
Here,	θ	mod	360°	is	short-hand	for	"adjust	θ	to	be	in	the	range	0°	to	360°";	
specifically,	add	360°	if	θ	is	negative.	

In	summary,	the	conveniences	of	this	method	are:	
• Only	one	complicated	formula	to	remember	and	key	in.	
• The	altitude	Hc	and	azimuth	Zn	are	computed	at	the	same	time.	
• There	are	no	complicated	"sign	rules"	to	remember	to	find	the	azimuth,	other	

than	to	add	360°	if	the	result	is	negative.	
One	caveat:	possible	ambiguity	of	the	sign	of	Hc	if	the	body	is	near	the	horizon.	
	

€ 

r,θ = pol tandec cos lat − sin lat cos lha, − sin lha( )
Hc = cos−1 rcosdec( )
Zn = θ mod 360°


