Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1.

	UT	Celestial Body	Ho	GHA	Dec
Sight 1					
_					
Sight					
advanced					
Sight 2					

Running Fix Adjustments

Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is +, S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$a \qquad b \qquad b \qquad 1 \qquad b$	$\theta_{Declination} = D \cos C$	C = Course of travel in
$\theta_{GHA} = \sin C \int_0^{\infty} \frac{1}{\cos(L + x \cos C)} dx$		degrees
$=\frac{180}{\pi}\tan C\left[ln\left(\frac{\tan\left(45^\circ+\frac{L+D\cos C}{2}\right)}{\tan\left(45^\circ+\frac{L}{2}\right)}\right)\right]$		D = nautical miles traveled L = Original declination
Special case for traveling due east or west (C is 90° or 270°): $\theta_{GHA} = D \frac{\sin C}{\cos(L)}$		

- $\cos(D_{12}) = \sin(Dec_1) \sin(Dec_2) + \cos(Dec_1) \cos(Dec_2) \cos(GHA_1 GHA_2)$
- $\cos(A) = [\sin(Dec_2) \sin(Dec_1) \cos(D_{12})] / [\cos(Dec_1) \sin(D_{12})]$
- $\cos(B) = [\sin(H_2) \sin(H_1)\cos(D_{12})] / [\cos(H_1)\sin(D_{12})]$
- $sin(Lat) = sin(Dec_1)sin(H_1) + cos(Dec_1)cos(H_1)cos(A\pm B)$
- $\cos(LHA_1) = [\sin(H_1) \sin(Dec_1)\sin(Lat)] / [\cos(Dec_1)\cos(Lat)]$

D12	Α	B
	A+B	A-B
Lat		
LHA1		
Long = $LHA_1 - GHA_1$		

West longitude is negative

Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1.

	UT	Celestial Body	Ho	GHA	Dec
Sight 1					
Sight					
advanced					
Sight 2					

Running Fix Adjustments

Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is +, S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$a \qquad b \qquad b \qquad 1 \qquad b$	$\theta_{Declination} = D \cos C$	C = Course of travel in
$\theta_{GHA} = \sin C \int_0^{\infty} \frac{1}{\cos(L + x \cos C)} dx$		degrees
$=\frac{180}{\pi}\tan C\left[ln\left(\frac{\tan\left(45^\circ+\frac{L+D\cos C}{2}\right)}{\tan\left(45^\circ+\frac{L}{2}\right)}\right)\right]$		D = nautical miles traveled L = Original declination
Special case for traveling due east or west (C is 90° or 270°): $\theta_{CUA} = D \frac{\sin C}{\cos^2 C}$		
$\cos(L)$		

- $\cos(D_{12}) = \sin(Dec_1) \sin(Dec_2) + \cos(Dec_1) \cos(Dec_2) \cos(GHA_1 GHA_2)$
- $\cos(A) = [\sin(Dec_2) \sin(Dec_1) \cos(D_{12})] / [\cos(Dec_1) \sin(D_{12})]$
- $\cos(B) = [\sin(H_2) \sin(H_1)\cos(D_{12})] / [\cos(H_1)\sin(D_{12})]$
- $sin(Lat) = sin(Dec_1)sin(H_1) + cos(Dec_1)cos(H_1)cos(A\pm B)$

 $\cos(LHA_1) = [\sin(H_1) - \sin(Dec_1)\sin(Lat)] / [\cos(Dec_1)\cos(Lat)]$

D12	Α	B
	A+B	A-B
Lat		
LHA1		
Long = LHA ₁ – GHA ₁		

West longitude is negative

Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1.

	UT	Celestial Body	Ho	GHA	Dec
Sight 1					
_					
Sight					
advanced					
Sight 2					

Running Fix Adjustments

Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is +, S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$a \qquad b \qquad b \qquad 1 \qquad b$	$\theta_{Declination} = D \cos C$	C = Course of travel in
$\theta_{GHA} = \sin C \int_0^{\infty} \frac{1}{\cos(L + x \cos C)} dx$		degrees
$=\frac{180}{\pi}\tan C\left[ln\left(\frac{\tan\left(45^\circ+\frac{L+D\cos C}{2}\right)}{\tan\left(45^\circ+\frac{L}{2}\right)}\right)\right]$		D = nautical miles traveled L = Original declination
Special case for traveling due east or west (C is 90° or 270°): $\theta_{GHA} = D \frac{\sin C}{\cos(L)}$		

- $\cos(D_{12}) = \sin(Dec_1) \sin(Dec_2) + \cos(Dec_1) \cos(Dec_2) \cos(GHA_1 GHA_2)$
- $\cos(A) = [\sin(Dec_2) \sin(Dec_1) \cos(D_{12})] / [\cos(Dec_1) \sin(D_{12})]$
- $\cos(B) = [\sin(H_2) \sin(H_1)\cos(D_{12})] / [\cos(H_1)\sin(D_{12})]$
- $sin(Lat) = sin(Dec_1)sin(H_1) + cos(Dec_1)cos(H_1)cos(A\pm B)$
- $\cos(LHA_1) = [\sin(H_1) \sin(Dec_1)\sin(Lat)] / [\cos(Dec_1)\cos(Lat)]$

D12	Α	B
	A+B	A-B
Lat		
LHA1		
Long = $LHA_1 - GHA_1$		

West longitude is negative

Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1.

	UT	Celestial Body	Но	GHA	Dec
Sight 1					
Sight					
advanced					
Sight 2					

Running Fix Adjustments

Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is +, S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$a \qquad b \qquad b \qquad 1 \qquad b$	$\theta_{Declination} = D \cos C$	C = Course of travel in
$\theta_{GHA} = \sin C \int_0^{\infty} \frac{1}{\cos(L + x \cos C)} dx$		degrees
$=\frac{180}{\pi}\tan C\left[ln\left(\frac{\tan\left(45^\circ+\frac{L+D\cos C}{2}\right)}{\tan\left(45^\circ+\frac{L}{2}\right)}\right)\right]$		D = nautical miles traveled L = Original declination
Special case for traveling due east or west (C is 90° or 270°): $\theta_{CUA} = D \frac{\sin C}{\cos^2 C}$		
$\cos(L)$		

- $\cos(D_{12}) = \sin(Dec_1) \sin(Dec_2) + \cos(Dec_1) \cos(Dec_2) \cos(GHA_1 GHA_2)$
- $\cos(A) = [\sin(Dec_2) \sin(Dec_1) \cos(D_{12})] / [\cos(Dec_1) \sin(D_{12})]$
- $\cos(B) = [\sin(H_2) \sin(H_1)\cos(D_{12})] / [\cos(H_1)\sin(D_{12})]$
- $sin(Lat) = sin(Dec_1)sin(H_1) + cos(Dec_1)cos(H_1)cos(A\pm B)$

 $\cos(LHA_1) = [\sin(H_1) - \sin(Dec_1)\sin(Lat)] / [\cos(Dec_1)\cos(Lat)]$

D12	Α	B
	A+B	A-B
Lat		
LHA1		
Long = LHA ₁ – GHA ₁		

West longitude is negative