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lunar tables, from which those tables, in the Nautical
Almanac, of the lunar distances were calculated, under
the direction of Dr. Maskelyne for many years. In 1806
the French Board of Longitude published new Lunar Ta-
bles, calculated by Du Burg, from the theory of Laplace
and the observations of Dr. Maskelyne; and from these
tables the lunar distances in the Nautical Almanac of
1813, and the following years, are computed.

The above two difficulties having been obviated, a third
seems still to remain; and though this is in some measure
removed by the application of the Nautical Almanac and
requisite tables, yet still the calculation is more tedious
than might be wished ; nor is it possible to render it much
shorter, as the problem necessarily comprehends the solu-
tions of two spheric triangles : this arises from the circum-
stance of the observed distances between the heavenly bo-
dies Bt being the true distances; for the altitudes of those
bodies are more or less affected both by refraction and
parallax; and though these effects only operate in a ver-
tical direction, yet that which changes the altitude of two
bodies, must also change the distance between them. This
is evident from the consideration, that the altitude of a ce-
lestial object is an arc of an azimuth circle intercepted
between the object and the horizon, and as all azimuth
circles incline gradually.to each other, from the horizon
to the zenith, where they meet, it is plain that the more
two bodies are apparently raised, the less will be their
apparent distance asunder, and the contrary.

It has been already stated that the hecavenly bddies are
raised by refraction, and depressed by parallax; and that
these effects are greatest in the horizon, and gradually di-
minish to the zenith, where they become nothing. Re-
fraction depends on altitude alone, but parallax depends
on both altitude and distance from the earth. All celes-
tial objects, except the moon, are more affected by re-
fraction than by parallax, and therefore appear above
.their true places; but the moon is always scen, excepting
in’ the zenith, below her true place, being more affected
by parallax than by refraction, on account of her prox-
imity to the earth.

These effects of parallax and refraction, though coun-
teracting each other, seldom do it so equally as to render
all correction unnecessary.  Sometimes the apparent di-
stance is nearly a whole degree more or less than the true
distance; and the principal cause of so great a difference
is the moon’s parallax ; for this bady, which is the chief
guide to the longitude, is also the great cause of error in
the distances, and is therefore the principal object of cor-
rection, .

In ‘making a lunar observation, four persons are usually
employed, one of whom takes the distance, two the alti-
tudes, and the fourth notes the time. These things should
be performed at the same instant; and if the observation
be repeated several times, and a mean taken, the work is
likely to be the more correct; and great care is here ne-
cessary, for an error in this part of the operation, parti-
cularly in taking the distance, will pervade the subsequent
_parts of the work, and will of course produce a wrong solu-
tion. The manner of adjusting the instruments, and of
making the observations, is best taught by practice. Those
who wish for written instructions on the subject, are re-
ferred to the British Mariner’s Guide by Dr. Maskelyne,
to Dr. Mackay’s book on the Longitude, or to professor
Vince's Practical Astronomy.
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Of correcting the Altitudes of the observed Objects.—When
a lunar observation is made, the first object is to clear the
altitudes from semidiameter, dip, refraction, and parallax,
according to usual practice. ‘The moon’s parallax in al-
titude must next be calculated : by saying, * As radius is
to the sine of her genith distance, 5o is the sine of her ho-
rizontal parallax (as given in the Nautical Almanac) to
the sine of her parallax in altitude.

In correcting the moon’s altitude, an allowance should
be made for the augmentation of her semidiameter, which
gradually takes place from the horizon to the zenith,
This increase is given, in the 4th of the Requisite Tables,
for every 5 degrees of altitude, which correction is to be
added to her horizontal semidiameter given in the Nau-
tical Almanac,

The augmentation of the moon’s semidiameter is caused
by her being nearer to the spectator in the zenith than in
the horizon, by a scmidiameter of the earth—for the ap-
parent magnitude of a body is in the inverse ratio of its
distance from the observer; and as the earth’s semidia-
meter bears a very sensible proportion to the moon’s di-
stance, she is seen under the greatest angle in the zenith,
which angle gradually diminishes to the horizon.  ~

‘There are other corrections of the altitudes, which may
be necessary in cases of peculiar nicety, but which are
seldom noticed at sea.. These are, an allowance for the
contraction of the vertical semidiameters of the sun and
moon by refraction; a correction of the moon’s parallax,
supposing the earth an oblate spheroid ; a cosrection for
the refraction according to the actual state of the atmo~
sphere, as shown by a thermometer and barometer, and not
according to the mean astronomical reffaction which is
commonly used.  These corrections, though perhaps ne-
cessary towards the perfection of this problem, being very
small, and frequently counteracting each other, are ge-
nerally considered of little consequence in nautical prac-
tice, where greater errors are unavoidable.

From the corrected Altitudes to find the true Distance.—It
is easy to conceive that by a lunar observation, the three
sides of a spheric triangle are measured in the heavens,
which sides are the apparent co-altitudes of the observed
bodies, and their apparent distance asunder. '

The co-altitudes or zenith distances being corrected, the
question is, to find the true distance between the observed
bodies; but here only two things are given, and therefore
it cannot be performed until the dngle at the zenith is
known, which is determined from the three given sides of
the triangle, by the rules of spheric trigonometry. See
KeLLY’S Spherits, pa. 182.

As the effects of parallax, refraction, &c, operate only
in a vertical direction, it is evident that the corrections
of the zenith distances, or containing sides, will not change
the included angleat the zenith ; and therefore three things
are now known, namely, the corrected zenith distances
and the included angle, whence the other side is deter-
mined by spherics, and this side is the true distance
sought.

A general View of the different Methods of working the
lunar Observations.—Few problems have ever been more in-
vestigated and studied, than that of clearing the lunar di-
stances, and many ingenious methods have been devised for
contracting the operation. These methods are founded on
some of the following general principles. The first is
spheric trigonometry, as before explained ; the second is.
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and within a certain limit as to distance, the correction is
additive.—2. When the sine of the moon’s altitude is to
that of the star’s, as radius is to the cosine of the distance,
then the true and apparent distances are nearly cqual :
but when the moon’s altitude is greater than the star’s,
beyond that proportion, the correction’is additive ; except
when the distance is about 90°, or more, and then it is
subtractive.—3. Though the correction additive does not
occur so frequently as the subtractive, nor is it in gcryeral
so great, yet it admits of a wider variation, being sometimes

above 1°; but the subtractive correction is never quite so~

much, X
The author of this construction further observes that,

« In solving the lunar problem by this projection, a slate
will perhaps be found more convenicnt than paper; and a
large scale of chords is, of course, preferable to a small
one.—That, in the foregding examples, round numbers
have been chosen for the sake of simplicity ; but frac-
tional quantities might have been adopted with cqual ac-
curacy. Itis not however presumed that the results of all
lunar problems will be alike correct by this method, but
they will be found seldom to vary above half a minute
from the true distance; which cannot be deemed of
much importance, when it is considered that greater inac-
curacies are perhaps unavoidable in the observations. It
is extremely difficult, for instance, to ascertain within a
minute the true point of contact between the moon and
the sun or star. Their altitudes too are often doubtful,
on account of the changes of. refraction, and the haziness
of the horizon: to which may be added the imperfection
of instruments, the incompetency of observers, and even
the inaccuracy of the lunar tables themselves, which™have
been hitherto only in a progressive state of improvement.
1t is well known that, from various unavoidable causes,
all astronomical computations are but approximations to
perfect accuracy; and that in this science difficulties and
obstructions are much greater at sea than at land. It is
also allawed, that of all the operations in nautical astro-
nomy, the lunar problem is the moust embarrassing, and
the most liable to error; and itis likewise agreed that the
Lest mode of diminishing such uncertainties, is by multi-
plying the observations, and taking a mcan of many trials.
Hence -an approximate method, like the present, which
cannot essentially err, and which is performed with so
much expedition, must be highly useful, as affording the
most time for repeating the observations. Even where no
such repetitions are required, this projection may be ad-
vantageously used as a substitute for troublesome compu-
tations, particularly in the commaon course of nautical
practice. It may indeed be observed, that the more ur-
gent duties of scamen seldom allow them sufficient leisure
for tedious numerical operations. Besides, it seems rather
avain pursuit to sacrifice so much time in scarch of a few
seconds, where there are probably errors of whole minutes
in the data. It may even be observed, that long and la-
borious calculations contain within themsclves many
sources of error, to which projection is not exposed.”

Lu~ar Month, is either periodical, synodical, or illu-
minative: which see; also MoxTH.

Lunar Year, consists of 354 days, or 12 synodical
months, of 29% days cach. Sec Yeaw. In the early
ages, the lunar year was used by all nations; the variety
of course being more frequent and conspicuous in this
planct,and consequently better known to men, than those
of any other. The Romans regulated their year, in part,
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by the moon, even till the time of Julius Casar.
Jews too had their lunar month and year.

Lunar Didl, Eclipse, Horoscope, and Rainbow. See the
several substantives.

LUNATION, the period or time between one néw moon
and another; it is also called the synodical month, consist-
ing of 29 days 12 his. 44 m. 3 sec. 11 thirds; excecding
the periodical month by 2 ds. 5 hrs. 0 m. 55 sec.

LUNE, or LuNuLa, or little moon, is a geometrical
figure, in form of a crescent, terminated by the arcs of two
circles that intersect each other within.

Though the quadrature of the whole circle has never been
effected, yet many of its parts have beensquared. The first
of these partial quadratures was'that of the lunula, given
by Hippocrates of Scion, or Chios; who, from being a ship-
wrecked merchant, commenced geometrician. But though
the quadrature of the lune be generally ascribed to Hip-
pocrates, yet Proclus expressly says it was found out by
Ocnopidas of the same place. ~ See Heinius in Mem. de
F'Acad. de Berlin, tom. ii. pa. 410, where he gives a disser-~
tation concerning this Oenopidas. ~See also CircLE, and
QUADRATURE. B

‘The lune of Hippocrates is this: Let aBc be a semi-
circle, having its centre &, and ADc a quadrant, having its
centre F; then the figure ABCDA, contained between the
arcs of the semicircle and quadrant, is his lune ; and it is

The

“equal to the right-angled triangle acr, as is thus easily

proved. Since A¥*= 24’ that is, the square of the ra-
dius of the quadrant equal to double the square of the
radius of the semicircle; therefore the quadrantal area
ADCFA is = thesemicircle ABCEA ; from cach of these take
away the common space ADCEA, and there remains the
triangle AcF = the lune aABcDA.

L2

L

Another property of this lune is, that if ¥6 be any line
drawn from the point ¥,and an perpendicular to it; then
is the intercepted part of the lune ac1a = the triangle
AGH, cut off by the chord line a6 ; or in general, that the
small segment AKGA is equal to the trilineal A1na. For,
the angle A¥c being at the centre of the one circle, and at
the circumference of the other, the arcs cut off aG, ar
are similar to the wholes aBc, ADC; therefore the small
seg. AKGA is to the semisegment 111, as the whole semi-
circle ABCA, to the semisegment or quadrant ADcCF, that
is in a ratio of equality.

Again, if aBc (fig. 2) be a triangle, right-angled at ¢,/
and if semicircles be described on the three sides as dia-
meters ; then the triangle T (aBc) is equal to the sum of
the two lunes L1, L2. For, the greatest semicircleis equal
to the sum of both the other two; from the greatest semi-
circle take away the segments s 1 and s2, and there remains
the triangle T; also from the two less semicircles take away
the same two scgments s1 and s2, and there remains the
two lunes L} and 12 ; therefore the tiangle T = L1 + 1.2,
the two lunes.

LUNETTE, in Fortification, an invcloped counterguard,
or mound of carth, made beyond the second ditch, oppo-
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the doctrine of proportional errors, by which the effects
that the errors in the altitudes produce on the distance,

", are solved by fluxions, or by the differential celculus; and
a third principle has been lately discovered, which is
founded on the properties of a quadrangle inscribed in a
circle, as explained.and excmplified by the inventor, Dr.
Andrew, in his Astronomical and Nautical Tables.

Various methods of working the lunar observationy
have been devised, chicfly by Halley, Euler, Mayer, Mas-
kelyne, Dunthorn, Lyons, Witchell, Burrow, Borda, Walcs,
Mackay, Kelly, Gerrard, Andrew, and Mendoza, The
methods of the two last authors appear to be the most
concise, but all are sufficiently correct, and seamen gene-
rally prefer such as they have first learnt. It may indced
Le observed, that operations which appear the most con-
cise, arc not always the most expeditiously performed ;
as much depends on the number and variety of tables re-
quired, and the manner of applying them. No method
has hitherto obtained an exclusive preference over the rest,
nor does it appear possible to reduce the calculation to
& concisencss to answer the general wants or wishes of sea-
men;and hence, other modes have been devised of obtain-
ing approximate solutions by projection or graphic ope-
ration. :

Graphic Operations.—The first graphic method for clear-
ing the distances, was that published by Lacaille, called
the Chassis de Reduction, which has since been copied
by Lalande, Mackay, and others. Itiis an orthographic
projection, consisting of a great number of lines accurately
drawn, and various scales for obtaining the different cor-
rections. .

On similar principles, and for the same purpose, the
late Mr. James Fergusson, teacher of navigation and exa-
miuner in that science to the East-India Company, con-
structed a Rotula, or longitude instrument, which did
great credit to bim as a man of science.

Another graphic operation, of a different description,
was cxecuted by Mr. George Margetts, and published in
1790. It consists of 70 large plates, containing numerous
lines drawn from the solution of lunar distances in Dr.
Shepherd’s Tables. By Margett's Longitude Tables, the
solution of a lunar observation may be obtained in about
one-fourth of the time required by calculation; and the
answer, though not given as perfectly acturate, is suffi-
ciently =o for the general purposes of navigation.

Dr. Kelly has devised an orthographic projection
founded on the fluxional analogies of spheric tmangles,
which is published in his Introduction to Spherics and
Nautical Astronomy, where an investigation of its princi-
ples is given (pa. 195, edit. 2, 3, and 4), with a demon-
stration, showing that, in proper altitudes, it cannot es-
sentially err, but must give the true distance within a few
seconds. ‘The simplicity of this projection is extremely
curious, as giving an approximate solution of a complicated
problem, by drawing four right lines only, from the scale
of chords, and it must therefore be very useful, especially
where expedition is required.

Since the first appearance of this projection, which was
in 1795, several mathematicians have turned their at-
tention to the subject, and various ingenious plans have
been proposed for shortening and simplifying the opera-
tion, among which may be mentioned a Rotula by Mr. B.
Donne of Bristol, which solves the problem with great

accuracy.
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The following is an abstract of Kelly's Projcc(h‘m, in-
serted here by permission of the author.
Eram. 1.” Given the apparent distance between the

moon, and thesun, or astar - - - 30°
The moon’s altitude - - - - 20
The star’s altitude - - - - - 40
The moon’s horizontal parallax - - -1

To ﬁm'l the true distance.

¥ E A

With the sweep of 60°, from a scale of chords, describe a
semicircle, and bisect it by the perpendicular AB. On the
right hand side of this line, from B to ¢, lay off 30°, the
apparent distance, from the same scale. Also the moon’s
altitude, 20°, from & to a, and from ¥ to b; and draw ab.
Then lay off the sun’s co-altitude, 50°, both ways from ¢
to m and n, and draw mn, intersecting ab in p.—Then is
D( the mean correction, to be measured on the scale of
chords, calling every degree on the scale a minute; which
must be reduced to the true correction by the following
general rule: first observing that if this line p ¢ falls on
the right-hand side, as in fig. 1, the correction is negative
or subtractive; but if on the left, as in fig. 2, the correc-

tion is positive or additive.

Rure. Multiply the mean correction, p(, by the
given horizontal parallax, and divide the product by 62
when the correction is subtractive, but by 53 when it is
additive. Then the quotient will be the true correction.
Thus, in the first case p ¢ measures 413, or 41’ 15", and
being subtractive, it is multiplied by 60', and divided by
62, which givesthe true correction 39’ 55", being only one
second more than by calculation ; hence the true distance
is 29° 20 5",

Ezamp. 2. Given the apparent distance 30°

The moon’s altitude 40
‘The sun or star’s altitude 20
The moon’s horizontal parallax 1
To find the true distance.

Describe the semicircle as before (or a greater arc to n
if wanted, as in fig. 2), and lay off the apparent distance
B¢ = 30°. Make Baand ¥b = 40° the moon’s altitude,
and draw ab. Lay off the star’s co-altitude 70°, from ¢
to m and n, and drawn mn, Then is p { the mean cor-
rection, which here measures 24’ 10”; and being multi-
plied by 60, and divided by 53, it gives 27’ 21" for the
true correction, being only 3" more than the result by cal-
culation; and the correction being additive, it gives
380° 27" 21" for the true distance.

This projection will appear still more simple by draw-
ing the triangle only, and laying off the altitudes from the
line of sines. Thus, in fig. 1, project the angle Bac = 30°,
and make A ¢ = sine of 20° also 4 % = 40° Then per-
pendicular lines-from ¢ and % will meet in D as before.

From the foregoing projection, the following general
rules are obvious, for cstimating the correction of 8 lunar
observation without any operation.—1. When the moon is
lower than the star, the correction is always subtractive ;
but when it is the higher body, beyond a certain extent,




