Latitude & Longitude from the sun meridian passage

07 Oct. 2018 was a nice sunny day. I decided to take this opportunity for sun meridian passage measurements (using mirror artificial horizon).

Having the DR longitude λ = 005° 07.3′ E (which is A.t.T 20min 28 sec) and the meridian massage 11:48 GMT for that day in Nautical Almanac, I can calculate the time of sun's culmination which expected to be at 11:27 GMT or 13:27 MET. At about 15 min earlier I had to start "shooting sun" but I failed because the tripod had to be repositioned in order to see the sun reflection in the artificial horizon. As the result I missed the moment of sun's culmination. In spite of this I decided to measure at least the last portion of the sun's path after the culmination moment:

GMT	2*Hs
11:32:03	63° 38.6′
11:32:48	63° 39.2′
11:33:47	63° 37.4′
11:34:37	63° 37.6′
11:35:36	63° 37.8′
11:36:30	63° 36.8′
11:39:23	63° 34.1′
11:41:17	63° 32.2′
11:43:14	63° 29.8′

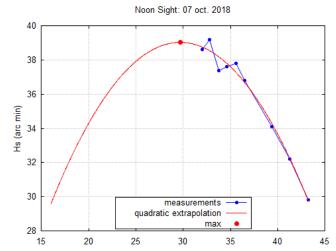


Figure 1: Quadratic extrapolation – way to find (reconstruct) the culmination time and altitude.

By quadratic extrapolation (Figure 1, red curve) I could recover the maximum i.e. the culmination moment and culmination height:

GMT max	2*Hs max
11:29:41	63° 39.0′

Having this data we can proceed further. Now we have to determine true altitude of a culmination moment (H_t), corresponding zenith distance (Z) and sun's declination (S_0). The result we can find in the Table on the next page. After that we can determine our latitude:

$$\phi = 57^{\circ} 56.1' \text{ (to N)} - 5^{\circ} 34.7' \text{(S)} = 52^{\circ} 21.4' \text{ N}.$$

Sake of clarity I also added a schematic drawing in Figure 2.

If we compare this result to the exact latitude which is ϕ_{exact} = 52° 23.1′ N we find a difference of 1.7′ which is quite OK.

2*Hs	=	63° 39.0′
i.c.	=	- 0.7´
2*H _m		63° 38.3′
H _m	=	31° 49.2′
Dip	=	Not Applied
App. alt.	=	31° 49.2′
mc (LL)	=	+14.7′
H _t	=	32° 3.9′
$Z = 90^{\circ} - H_{t}$	=	57° 56.1′ to N

δ _⊙ (h)	=	5° 34.2′ (S)
corr (m)	=	+0.5′
δ_{\odot} (h:m)	=	5° 34.7′ (S)

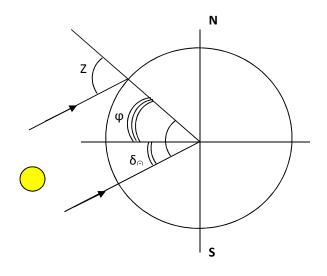


Figure 2: Schematic drawing from where it follows: $Z = \phi + \delta_{\odot}$

From the sun's meridian passage we can also calculate our longitude (λ), which is *arc*-conversion of the time difference between our culmination time and that in Greenwich. We should not expect it to be as accurate as the latitude but we can give it a try.

The equation of time for 07 oct. 2018 from Nautical Almanac is 12m 10s which means that the GMT time of culmination at Greenwich on that day was 11:47:50. Our calculated time of culmination is 11:29:41 GMT (it happened earlier so we are to the east of Greenwich). Time difference is 00:18:09 converted to arc gives us longitude $\lambda = 004^{\circ}$ 32.3′ E. This result has a difference with the exact longitude ($\lambda_{exact} = 004^{\circ}$ 39.0′ E) which amounts to 6.7′ longitudinal minutes or 4.1NM which is 2.4-times that for latitude error but still looks good.

Lesson learned – better preparation for observations and more practice with artificial horizon!

