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The	altitude	of	the	moon	measured	at	the	earth's	center	is	different	from	the	

altitude	measured	by	an	
observer	at	the	earth's	surface.		
In	the	figure,		Hg	(g	for	
geocentric)	is	the	angle	formed	
by	two	lines:	(1)	a	horizontal	line	
parallel	to	the	observer's	
horizon,	but	going	through	the	
center	of	the	earth	(point	A),	and	
(2)	the	line	connecting	the	center	
of	the	earth	(point	A)	and	the	
center	of	the	moon	(point	B).		By	
corresponding	angles	(of	a	
transversal	crossing	two	parallel	
lines),	Hg	is	also	the	angle	at	
point	D	in	the	figure.	
	

On	the	other	hand,	the	observer	measures	angle	Hs	(s	for	sextant)	between	the	
horizon	and	the	moon's	center	(in	practice,	we	would	measure	to	a	limb	and	then	
add	in	the	semidiameter	of	the	moon).			Note	that	Hg	is	an	external	angle	of	triangle	
formed	by	the	points	Observer,	B	and	D,	and	thus	equals	the	sum	of	the	two	non-
adjacent	angles:	
	

€ 

Hg = Hs+ p	 	 	 	 	 	 	 (1)	
Angle	p	is	the	"parallax	in	altitude".	
	
We	next	consider	the	small	triangle	formed	by	points	Observer,	A,	and	the	unlabeled	
right	angle.		This	right	triangle	has	a	hypotenuse	equal	to	the	earth's	radius,	labeled	
e.		As	shown,	the	angle	between	hypotenuse	e	and	the	adjacent	side	is	Hs,	which	we	
deduce	by	noting	Hs	at	the	Observer	plus	a	right	angle	(by	construction,	side	e	is	
perpendicular	to	side	Observer-C),	plus	the	unlabeled	angle	of	the	small	triangle	
sum	to	a	straight	line	equal	to	180°:	
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Hs+ 90° + x =180°

x = 90° −Hs
	 	 	 	 	 	 (2)	

And	because	angle	x	and	the	center	angle	must	add	to	90°	in	the	small	right	triangle,	
the	center	angle	is	Hs:	
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x + y = 90°

90° −Hs+ y = 90°

y = Hs

	 	 	 	 	 	 (3)	

In	the	small	triangle,	we	have:	
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cosHs =
adjacent
hypotenuse

=
s
e

s = ecosHs
		 	 	 	 	 (4)	

where	e	is	the	size	of	the	earth's	radius,	and	s	is	the	labeled	side.	
	
We	now	look	at	the	bigger	right	triangle,	which	uses	the	same	right	angle	as	the	
small	triangle,	but	with	hypotenuse	AB.	By	trigonometry:	

	

€ 

sin p =
opposite
hypotenuse

=
ecosHs
Dg

	 	 	 	 (5)	

where	Dg	is	the	distance	between	centers.	
	
If	the	moon	were	exactly	on	the	horizon	(ignoring	any	refraction...	this	is	only	
geometry),		we	form	a	third	right	triangle	with	points	A,	Observer	and	C.	In	this	
triangle	we	have:	

	

€ 

sinHP =
opposite
hypotenuse

=
e
Dg

	 	 	 	 	 (6)	

where	e	is	the	radius	of	the	earth,	Dg	is	the	distance	between	bodies,	and	HP	is	the	
horizontal	parallax,	which	is	labeled	in	the	figure.	
Using	(6)	in	(5):	
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sin p =
ecosHs
Dg

= sinHP cosHs 	 	 	 	 (7)	

Equation	(7)	tells	us	how	to	find	the	parallax	in	altitude	p,	if	we	have	a	sextant	
altitude	and	(from	ephemeris)	the	horizontal	parallax.	
	
Though	the	sine	of	an	angle	is	defined	as	a	ratio	of	two	sides,	Newton	found	an	
infinite	series	definition:	
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sin x = x − x
3
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where	angles	are	measured	in	radians.	(Radians	are	dimensionless	numbers.)	For	
small	values,	x<<1	radian,	the	higher	order	terms	are	small,	and	we	have	the	useful	
approximation:	
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sin x ≈ x 	 (x	in	radians)		 	 	 	 (9)	
For	example,		
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1° =
π
180

= 0.0174532925 rads

sin1° = 0.0174524064
	 	 	 	 (10)	

For	the	small	angles	involved	in	parallax,	generally	smaller	than	one	degree,	we	can	
use	(9)	in	(7)	to	get	a	reasonably	accurate	expression:	
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p rad[ ] ≈ HP rad[ ]cosHs 	 	 	 	 	 (11)	

where	the	angles	are	expressed	in	radians.		However,	if	we	multiply	both	sides	by	a	
factor	to	convert	from	radians	to,	for	example,	arc	minutes:	
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360⋅ 60
π
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⎠ 
⎟ ⋅ HP rad[ ]cosHs

p[' ] = HP '[ ]cosHs
	 	 (12)	

	 	
the	equation	still	holds.	
	

Change	Rates	
The	change	in	Hg	with	time	is	related	to	the	change	in	Hs.	Beginning	with	(1):	
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Hg = Hs+ p	 	 	 	 	 	 (13)	

and	taking	the	derivative	with	respect	to	time:	
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dHg
dt

=
dHs
dt

+
dp
dt 	 	 	 	 	 (14)	

For	the	last	term	in	(14),	we	use	(7):	
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d sin p
dt

=
d
dt
sinHP cosHs( ) 	 	 	 	 (15)	

That	becomes	
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cos p dp
dt

= cosHP cosHs dHP
dt

− sinHP sinHs dHs
dt 	 (16)	

or,	
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dp
dt

=
cosHP cosHs

cos p
dHP
dt

−
sinHP sinHs

cos p
dHs
dt 	 (17)	

That	is	the	derivative	in	all	of	its	glory,	but	if	we	assume	the	HP	is	constant	or	very	
slowly	varying	the	first	member	can	be	dropped.		If	we	assume	both	the	horizontal	



parallax	and	the	parallax	in	altitude	are	very	small	(in	radians),	we	can	use	
approximations	(note	cos	x	≈1-x2/2,	or	in	this	case,	just	1):	
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dp
dt

≈ −HP sinHs dHs
dt 	 	 	 	 	 (18)	

If	we	want	the	units	to	be,	for	example,	arc	minutes	per	second,	we	multiply	both	
sides	by	a	conversion	factor.	However,	in	(18),	this	factor	can	only	be	applied	once	
to	both	sides,	and	the	HP	(which	is	an	approximation	for	sin	HP)	must	remain	in	
radians.		Putting	(18)	into	(14),	we	have	
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dHg
dt

=
dHs
dt

−HP sinHs dHs
dt

dHg
dt

= 1−HP sinHs( ) dHs
dt

	 	 	 	 	 (19)	

Here,	the	change	in	the	geocentric	altitude,	and	the	change	in	sextant	altitude	can	
both	be	in	units	of	arc	minutes	per	second,	but	HP	must	be	in	radians	(or	sin	HP	
used	instead	of	simply	HP).	
If	one	or	the	other	of	the	rates	is	given,	(19)	can	be	used	to	deduce	the	rate	of	the	
other.

	
	
	


