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Rotated	Coordinate	Systems	is	a	confusing	topic,	and	there	is	no	one	standard	or	
approach1.		The	following	provides	a	simplified	discussion.	

	

Rotating	a	point	in	two-dimensions	
We	can	rotate	a	point	in	the	real-imaginary	plane2,	as	shown	in	Figure	1.			Let	vector	

a	represent	the	complex	number3	a	=	ax	+	i	ay	=		
r	exp(	i	β).		Multiply	by	exp(	i	φ),	to	get	the	
rotated	vector	b=	r	exp(i	(β+φ)).	Writing	the	
complex	numbers	in	Cartesian	coordinates,	the	
operation	is:	

		
	
	

	
	

This	result	tells	us	how	to	rotate	the	point	(x,	y)	
counter-clockwise	from	the	x-axis	by	an	angle	φ.		
Using	matrix	notation4,	and	writing	the	point	as	
a	two	element	(vertical)	vector,	the	rotation	is	

written	as:	

	

€ 

cosφ −sinφ
sinφ cosφ
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
x
y
⎡ 
⎣ ⎢ 
⎤ 
⎦ ⎥ 

=
x cosφ − y sinφ
x sinφ + y cosφ
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
.	 	 	 	 	 	

And	thus	we	define	the	rotation	matrix	R:	

	

€ 

R =
cosφ −sinφ
sinφ cosφ
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
	

This	matrix	rotates	a	point	in	the	angular	direction	from	the	"first	axis"	(the	x-axis)	
toward	the	"second	axis"	(the	y-axis),	the	short	way.	

																																																								
1	https://en.wikipedia.org/wiki/Rotation_(mathematics)	
2	https://en.wikipedia.org/wiki/Complex_number#Absolute_value_and_argument	
3	https://en.wikipedia.org/wiki/Complex_number#Euler's_formula	
4	https://www.mathsisfun.com/algebra/matrix-multiplying.html	

Figure	1	
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ax + i ay( ) cosφ + isinφ( )

= ax cosφ − ay sinφ( ) + i ax sinφ + ay cosφ( )



	

Rotate	a	Coordinate	System	
We	shall	represent	the	basis	vectors	of	a	orthonormal	coordinate	system	as	2-
tuples,	e.g.	(1,	0)	and	(0,	1)	and	their	equivalent	2	x	1	vectors	

	

€ 

x = 1
0
⎡ 
⎣ ⎢ 
⎤ 
⎦ ⎥ 
, y = 0

1
⎡ 
⎣ ⎢ 
⎤ 
⎦ ⎥ 
	

and	collecting	these	vectors	(as	columns)	in	a	basis	matrix	B:	

	

€ 

B = 1 0
0 1
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
	 reference	basis,	columns	are	the	basis	vectors	

It	is	understood	that	vector	x	represents	a	distance	of	"one	unit"	in	the	"x-direction",	
and	similarly	for	the	y	vector.		The	directions	and	distance	metric	remain	to	be	
specified	for	any	particular	circumstance....	though	the	directions	must	be	
orthogonal	(form	a	ninety	degree	angle).		
The	individual	basis	vectors	may	be	rotated	counter-clockwise	by	angle	φ	,	by	
multiplying	the	rotation	matrix	R	times	each;	or	in	one	step	by	multiplying	RB.		
However,	note	that	some	in	the	literature	reserve	R	for	rotating	points.		If	a	point	is	
rotated	by	angle	φ,	this	may	be	viewed	as	the	basis	vectors	rotating	in	the	opposite	
direction,	i.e.	by	-φ,	and	this	is	equivalent	to	using	RT	(R	transpose).		This	is	one	
possible	point	of	confusion!	
	

Rotation	Matrix	in	3-Dimensions	
We	will	use	(Figure	2)	an	orthogonal,	Right-Handed	Coordinate	system5	(RHS),	and	
introduce	the	3	x	1	z	vector	=	x	x	y,	where	x	represents	the	vector	cross	product6.			If	
we	hold	the	z	coordinate	constant,	and	rotate	about	the	z-axis,	counter-clockwise	
(from	the	x-axis	toward	the	y-axis),	we	can	use	the	2-dimensional	R	matrix	above	

embedded	in	a	3	x	3	rotation	matrix.		The	convention	will	
be:	

• RHS,	with	orthogonal	axes	
• Rotate	about	the	spin	axis,	leaving	two	axes	which	

will	rotate.	These	will	be	ordered	alphabetically	i.e.	
x,	y,	z,	and	this	order	defines	which	axis	of	any	pair	
will	be	"first".	

• When	the	observer	is	positioned	at	the	tip	of	the	
spin	axis,	looking	back	toward	the	origin,	a	
positive	angle	means	rotate	counter-clockwise.			
With	these	rules,	we	get	the	following	rotation	
matrices:	

																																																								
5	https://en.wikipedia.org/wiki/Cartesian_coordinate_system#In_three_dimensions	
6	https://en.wikipedia.org/wiki/Cross_product	

Figure	2	



	

€ 

Zθ( ) =
cosθ − sinθ 0
sinθ cosθ 0
0 0 1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

Y θ( ) =
cosθ 0 sinθ
0 1 0

− sinθ 0 cosθ

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

X θ( ) =
1 0 0
0 cosθ − sinθ
0 sinθ cosθ

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

	

	
where	the	name	of	the	rotation	matrix	indicates	the	spin	axis	about	which	the	
rotation	occurs.			

The	rotation	about	the	y-axis	deserves	a	comment.		
Orienting	the	axes	so	that	the	observer	is	looking	down	on	
the	x-z	plane	(Figure	3),	we	see	that	our	2-dimensional	
rotation	matrix	R	will	rotate	from	the	x-axis	toward	to	z-
axis:		R	rotates	the	"first	axis"	i.e.	x	toward	the	"second	
axis"	z,	and	this	is	clockwise.		We	would	have	to	switch	the	
order	of	the	axes	(make	z	the	first	axis)	or	more	simply,	
replace	θ	with	-θ	in	the	matrix	to	achieve	a	counter-
clockwise	rotation.		We	chose	the	latter	approach,	and	
used	the	trigonometric	identities:	

	

€ 

sin −θ( ) = −sin θ( ), cos −θ( ) = cos θ( ) 	
Thus	in	the	Y	rotation	matrix,	we	see	the	signs	on	the	sine	entries	negated	relative	to	
the	other	rotation	matrices.	

Matrix	Vector	Multiply	
Consider	the	columns	of	a	3	x	3	matrix	as	three	3	x	1	vectors	x,	y,	and	z.	Examine	the	
result	of	multiplying	this	matrix	times	some	vector	v	with	components	a,	b,	and	c.	It	
can	be	shown	that	this	multiplication	is	identical	to	the	sum	of	three	scaled	vectors:	

	

€ 

x y z[ ]
a
b
c

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= ax + by + cz
	
	

In	particular,	we	note	the	following:	

	

€ 

x y z[ ]
1
0
0

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= x , x y z[ ]
0
1
0

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= y, x y z[ ]
0
0
1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= z
	
	

We	will	use	this	observation	below	to	interpret	the	effects	of	a	rotation	matrix.	

Figure	3	



	

Chaining	Rotation	Matrices	
By	applying	to	the	initial	coordinate	system	up	to	three	sequential	rotations	in	turn7,	
we	may	achieve	any	orientation	we	desire.		However,	the	topic	is	complicated,	and	
we	will	give	it	(relatively)	short	shrift.		The	main	idea	will	be	to	distinguish	between:	

1. Intrinsic	rotations	-	use	the	"new"	axis	direction	of	the	rotated	system	when	
we	apply	a	second	rotation.	

2. Extrinsic	rotations	-	always	use	the	original	axes	directions	when	applying	
rotations.	

	
Intrinsic	Rotations	

Consider	some	basis	matrix	B,	where	the	columns	are	unit	length	vectors	pointing	in	
the	directions	x',	y'	and	z'.	These	directions	may	not	be	the	original	directions	of	the	
reference	basis	(i.e.	the	identity	matrix	I).	Now	post-multiply	B	by,	for	example,	
Z(θ):	

	

€ 

x' y' z'[ ]
cosθ −sinθ 0
sinθ cosθ 0
0 0 1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 	

Per	our	observation	in	the	previous	section,	the	last	column	of	Z	will	leave	z'	
unchanged.		Of	course,	both	x'	and	y'	will	be	rotated	counter-clockwise	about	axis	z'.	
The	important	observation	is	that	the	rotation	occurs	around	the	modified	axis	z'	
and	not	the	original	z	axis.		Thus:	
	
	 Post-multiply	=	intrinsic	rotation	=	about	the	changing	axes.	

	
Extrinsic	Rotations	

Now	consider	pre-multiplying	basis	matrix	B	by	some	rotation	matrix,	for	example:	

	

€ 

ZB	
Either	matrix	conforms	to	the	requirements	of	being	a	basis	or	a	rotation,	and	it	is	a	
matter	of	interpretation	or	usage	that	distinguishes	which	is	which.		In	other	words,	
we	may	interpret	Z	as	a	basis	matrix,	rotated	about	the	z-axis	of	the	original	
reference	system.		Interpreting	the	B	as	a	rotation	matrix,		the	multiplication	applies	
"previous	rotations"	as	encoded	in	the	B	matrix,	to	the	original	system	rotated	about	
an	axis	of	the	original	reference	system.		We	deduce:	
	
	 Pre-multiply	=	extrinsic	rotation	=	about	the	original	axes.	

																																																								
7	https://en.wikipedia.org/wiki/Euler_angles	



	
These	ideas	may	be	confusing,	so	let's	do	some	examples.	
	

Rotating	the	Equatorial	Coordinate	System	to	the	Horizon	Coordinate	System	
	
Intrinsic	Example	

Figure	4	shows	the	rotations	to	translate	from	the	reference	system	(black)	to	a	new	
system	(green),	that	coincides	with	transforming	from	equatorial	to	horizon	
coordinate	systems.		Before	continuing,		make	note	that	we	will	use	these	
identities8:	

	

€ 

sin 90 − x( ) = cos x , cos 90 − x( ) = sin x 	

	
We	begin	with	both	systems	aligned,	and	then	rotate	the	green	system	90°	counter-
clockwise	about	the	z-axis.		We	use	matrix	Z	(defined	above),	with	theta	=	+90°.	We	
get:	

	

€ 

0 −1 0
1 0 0
0 0 1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
	

Next,		rotate	the	green	y	and	z-axes		(90°-L)	counter-clockwise	(and	thus	the	z-axis	is	
L°	"above"	the	equatorial	x-y	plane).		We	are	doing	an	intrinsic	rotation,	so	this	
means	rotate	about	the	green	x-axis,	and	post-multiply9:	

																																																								
8	https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities	
9	https://www.mathsisfun.com/algebra/matrix-multiplying.html	

Figure	4	



	

€ 

0 −1 0
1 0 0
0 0 1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1 0 0
0 cos 90 − L( ) −sin 90 − L( )
0 sin 90 − L( ) cos 90 − L( )

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

=
0 −1 0
1 0 0
0 0 1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1 0 0
0 sinL −cosL
0 cosL sinL

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=
0 −sinL cosL
1 0 0
0 cosL sinL

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 	

This	matrix	rotates	the	reference	system	into	the	green	system.			
	
Extrinsic	Example	

	
Figure	5	

Now	let's	use	extrinsic	rotations,	where	rotations	are	always	about	the	axes	in	the	
reference	system	(Figure	5).		As	before,	we	begin	with	aligned	systems,	and	rotate	
counter-clockwise	90°	about	the	z-axis.		But	for	the	second	step,	we	pre-multiply,	
and	rotate	90-L	about	the	reference	(black)	y-axis:	

	

€ 

cos 90 − L( ) 0 sin 90 − L( )
0 1 0

−sin 90 − L( ) 0 cos 90 − L( )

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

0 −1 0
1 0 0
0 0 1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=
sinL 0 cosL
0 1 0

−cosL 0 sinL

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

0 −1 0
1 0 0
0 0 1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=
0 −sinL cosL
1 0 0
0 cosL sinL

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 	

and	we	get	the	same	result	as	before.	
	



Converting	between	Coordinate	Systems	
We	can	use	these	results	to	translate	between	coordinate	systems.		Let	a	point	in	the	
reference	system	be	identified	with	its	3-tuple	coordinates	(x,	y,	z),	basis	matrix	I	
(the	identity	matrix),	and	its	position	vector:	

	

€ 

p1 =
x
y
z

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
	

	
The	position	of	this	point	is	the	scaled	direction	
vectors	(i.e.	basis	vectors,	encoded	as	the	columns	
of	basis	matrix	I),	added	head	to	tail:	

	

€ 

Ip1 = x y z[ ]
x
y
z

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

= x x + y y + z z 	

That	same	point	in	the	rotated	system	with	basis	B	will	have	different	coordinates	
(x',	y',	z'),	and	a	different	position	vector	p2,	and	the	exact	same	location	is	found	
using:	

	

€ 

Bp2 = ʹ x ʹ y ʹ z [ ]
ʹ x 
ʹ y 
ʹ z 

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

= ʹ x ʹ x + ʹ y ʹ y + ʹ x ʹ z 	

Thus,	we	can	write	the	equation:	
	

€ 

Bp2 = Ip1 	

where	I,	the	identity	matrix,	is	the	basis	matrix	for	the	reference	system	and	B	is	the	
new	system.			
If	we	know	matrix	B,	this	equation	tells	us	how	to	translate	coordinates	in	the	
rotated	system	to	coordinates	in	the	reference	system:	
	

€ 

p1 = Bp2	

And	vice	versa10:	

	

€ 

Bp2 = p1
B−1Bp2 = B−1p1
p2 = BTp1

	

where	we	use	the	fact	that	the	inverse	of	B	is	the	transpose11	of	B	(see	last	section).			
Note	that	if	we	know	the	rotation	matrix	that	transforms	the	reference	system	to	the	
new	system:	

																																																								
10	https://www.mathsisfun.com/algebra/matrix-inverse.html	
11	https://www.mathsisfun.com/algebra/matrix-introduction.html,	section	"Transposing"	

Figure	6	



	

€ 

B =RI
B =R 	

we	see	that	the	rotation	matrix	is	the	basis	matrix.		And	of	course,	RT	is	the	matrix	
we	use	to	translate	reference	coordinates	into	the	new	coordinates	of	the	rotated	
system:	

	

€ 

pnew =RTpref 	

	

Inverse	of	a	Rotation	Matrix	is	its	Transpose	
By	definition,	rotating	a	position	vector	only	modifies	its	direction,	and	never	its	
length.		Their	lengths	are	equal:	

	 	

€ 

p2 = p1
Rp1 = p1
Rp1

2
= p1

2

Rp1( )TRp2 = p1
Tp1

p1
TRTRp1 = p1

Tp1

	

This	must	be	true	for	all	position	vectors,	which	implies	

	

€ 

RTR = I	
and	also	

	

€ 

RT =R−1	
	


