Reed Lunars Method Test Cases
  Last updated: February 15, 2018

  Slightly different results between Versions 1 and 2.
  Version 1 results shown below.

  Version 1
  ---------
  Ho for moon and body are input but Nautical Almanac correction
  for the Ha->Ho is required and input with opposite sign.
  Worth comparing technique with Letcher which requies the
  fewest inputs.

  Comments on NA Altitude Corrections:
   The Sun correction table includes refraction, parallax, and semi-
   diameter.  The Stars and Planets table is refraction only, but the
   Additional Correction for Venus and Mars takes care of parallax.
   This applies to the A2 and A3 tables.  The Moon tables in the back
   of the Almanac include refraction, parallax, semi-diameter, and
   augmentation. Stan Klein comments 10/8/2017

  Version 2
  ---------
  This version computes altitude corrections and reversed signs.
  The moon's Horrizontal Parallax is input.
  Letcher's and Bowditch-Thompson test cases can be used as-is.


  TimeDiff/4 = min' longitude error

  Reed Test Cases
  -------------------------------------------------------------------------------------------------------------------------------------------------------------------------
            Case 1     Case 2     Case 3     Case 4     Case 5     Case 6     Case 7     Case 8       Case 9      Case 10    Case 11     Case 12     Case 13   
  -------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  Moon                                                                                                                                                         Moon
   HoMoon  46°39.5'   28°20.8'   52°54.0'   13°38.3'   19°51.2'   16°39'25"   53°11.3'   37°50.1'     41°52.6'   14°11'24   16°39'25"   36°52'00"   27°50'00"   HoMoon    corrected for UL/LL, semi-diameter
   Alt Cor   -36.6'    -46.72'     -34.9'     -47.8'??   -48.5'     -49'17"     -33.2'     -42.3'       -40.6'     -52'25     -55'43"     -45'35"     -50'25"   Alt Cor  Fron NA, correction for SD and refraction, use opposite sign
   HP for V2  54.7'                            55.0'                                       55.18'       55.91'     60'33"     52'24"                            HP for V2
  Body      Sun        Star       Sun        Sun        Sun                                                                                                    Body
   HoBody  47°12.0'   48°26.82'  32°48.4'   30°05.0'   75°42.3'   13°38'28"   42°35.0'    36°10.7'     54°46.4   33°20'30   13°38'28"   47°31'00"   50°44'00"   HoBody    corrected for UL/LL
   Alt Cor    00.9'      00.72'     01.4'      01.5'      00.2'      01'00"      01.1'       01.4'        00.7      01'31      04'11"      00'47"      00'47"   Alt Cor   From NA, correction for SD and refraction, use opposite sign
   LDpc    80°39.3'   83°57.55'  63°14.55'  78°58.38'  55°48.4'   57°03'46"   70°11.1'    95°38.6'     73°59.6   44°31'18   57°03'46"   48°20'29"   93°09'59"   LDpc      Note that effect of Ho and AltCor is how much bodies were 
                                                                                                                                                                          displaced by Ha to Ho that changed the LDo to LDpc
  >A %m    0.9090     0.7980     0.3392     0.4782      1.000      0.0995      0.7189      0.8278       0.8842     0.5514     0.0995      0.5666      0.9059   >A %m
  >B %b    0.9070     0.6004     0.7377     0.1647     -1.004      0.1942      0.8246      0.8358       0.7977    -0.2505     0.1942      0.2175      0.8062   >B %b
  >Q       1.701E-6   0.0031    2.415E-5    0.0073    4.644E-6     0.0095      0.0021    -2.473E-6     4.586E-     0.0001     0.0001      0.0001    -1.155E-6  >Q
  >LDc     80°06.9'   83°20.9'   63°03.7'   78°35.73'  54°59.7'  56°59'38"[6] 69°48.3'    95°04.8'    73°24.26  44°00'22"  56°59'03"   47°54'50"   92°24'04"   >LDc
  >%Change -0.7000    -0.728     -0.3000    -0.478     -1.500     -0.100       -0.500      -0.600       -0.800     -1.200     -0.100      -0.900      -0.800   >%Change
  >delZcos -0.7960                          -0.0869                                                    -0.6276     0.7140     0.5114      0.4113     -0.7441   >delZcos  cosine of RBA angle
  >delZ     142.8°     115.4°     88.0°      85.0°        NA       59.2°       117.4°       136.2°       128.9°      44.4°     59.2° °     65.7° °    138.1°   >delZ     Relative Bearing Angle between moon-body vertical circles
                                                                                                                                                                          NA usually means angle is 0, bodies are vertically aligned on same VC
  Time                                                                                                                                                         Time
  LDo     20:16:37              14:43:55   16:35:20    00:55:00                00:27:06  00:05:54                                                               LDo
  LDc     20:16:57              14:43:55   16:35:36                            00:27:29  00:05:50.69   23:36:5                                                  LDc
  Dif           20                     0         16                            00:00:23  00:00:03.43                                                            Dif
  Lon err    05.0'                     0       04.0'                             05.8'      00.9'        00.4'                                                  Lon err
  -------------------------------------------------------------------------------------------------------------------------------------------------------------------------
            Case 1     Case 2     Case 3     Case 4     Case 5     Case 6     Case 7     Case 8       Case 9      Case 10    Case 11     Case 12     Case 13   
  -------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  Longitude error (in mins) = time seconds error / 4
  
  Case References:
  1) Example taken from "Lunars are Easy" paper by Frank Reed
      reednavigation.com/lunars/easylun.html, Thompson-
      Bowditch check compares very well. See those test cases.
  2) ?
  3) Reversed engineered to get pure Reed example LDa=62°42.25'
     KP=42°00.2'N 074°07.5'W Oct 14, 2017 GMT14:43:55
     LDpc=62°42.25'+16.1'+16.0'+00.2'=63°14.55' SDs and augmentation
  4) Mystic Seaport Workshop, Lunars exercise, November 15, 2014, Popko's best sight #4
  5) NavList, A Lunar Example: Sun and Moon Vertically Aligned",
     fer3.com/arc/m2.aspx/Lunar-Example-Sun-Moon-vertically-aligned-FrankReed-dec-2017-g40943
  6) Example from astronavigatiiondemystified.com/lunar-distance, Geocentric LD 56°59'22"
  7) KP=28°411'N 082°18.2'W Dec 26, 2017 moon-Aldabaran (far) LDgc 69°48.5'
  8) Extremely good KP=28°41.1'N 082°18.2'W Dec 24, 2017 moon-Aldabaran (far) LDgc 95°04.8'
  9) Sight #3, Inverness Series, January 21, 2018, Moon-Aldebaran
 10) Lunar-distance observations form by Robert Bishop, Sept 5, 1767, LDc source 44°00'22"
     cudl.lib.cam.ac.uk/view/MS-G-00298-00001-00003/1 
 11) Jack Case, "Astro Navigation Demystified", https://astronavigationdemystified.com/lunar-distance/,
     Geocentric lunar published 56°59'22"
 12) Henry Raper, "The Practice of Navigation and Nautical Astronomy", Nautical Astronomy, Ex.1, p.288
     Published LD cleared = 47°54'59"
     https://books.google.com/books?id=iMRNAAAAMAAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
 12) Henry Raper, "The Practice of Navigation and Nautical Astronomy", Nautical Astronomy, Ex.3, p.288
     Published LD cleared = 92°24'04", perfect agreement!
     https://books.google.com/books?id=iMRNAAAAMAAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false


                                                                      
  References:                                                         
   1)  Frank Reed, Lunars Workshop, Mystic Seaport, Nov 15-16, class notes.                                                         
   2) "Longitude by Lunars" by Frank Reed, reednavigation.com/lunars                               
   3) "Lunars are Easy" paper by Frank Reed, reednavigation.com/lunars/easylun.html                  
   4) "Angular Distances between two celestial objects and Lunar Calculation"                                                   
       www.tecepe.com.br/nav/DistTwoObjects.htm                
   5) Navigator Light PC program by Omar Reis, www.tecepe.com.br/nav                                   
   6) "Elements of Plane and Spherical Trigonometry: With Its Applications to the Principles
      of Navigation and Nautical Astronomy; with Logarithmic and Trigonometrical Tables" by           
      John Radford Young, Thomas Stephens Davies, London, 1833. Lunars example page 173.