
A M a c h i n e A l g o r i t h m f o r P r o c e s s i n g C a l e n d a r D a t e s

Key Words and Phrases: calendars, calendar date, Julian date,
Gregorian date, Gregorian calendar, Julian calendar, t ime in-
terval, continuous day count, For t ran s ta tement function,
ar i thmetic s ta tement function, funct ion

CR Categories: 3.1, 3.10, 3.11, 3.15, 3.2, 4.9

EDITOR :

The need to determine the elapsed number of days between
any two given calendar dates seems to be a common problem in
writ ing computer programs. Generally speaking, ra ther elaborate
logic is needed to take into account the varying number of days in
each month, plus the occurrence of leap years, and perhaps also
the omission of a February 29 in years divisible evenly by 100 but
not by 400. The following algorithm takes advantage of the
t runcat ion feature of integer ari thmetic in the FORTRAN pro-
gramming language to solve this problem in a very compact way.
I t converts any given calendar date (I = year; J = month, a
number from 1 to 12; K = day of month) to a Julian Date (JD) - -
a continuous count of days from an epoch in the very dis tant past .
For example, noon at Greenwich, England, on January 1, 1970, is
the beginning of Julian Date 2,440,588. So if I = 1970, J = 1, and
K = 1, then the algorithm gives JD = 2440588. Clearly, the inter-
val between any two calendar dates (on the Gregorian Calendar)
can be found by obtaining the Julian Date for each, and finding
the difference.

The algorithm is given below (presented as a FORTRAN arith-
metic s ta tement function). I t is valid for any Gregorian Date
producing a Julian Date greater than zero.

JD (I, J, K) = K -- 32075 -5 1461.(I -5 4800 -5 (J -- 14)/12)/4

-5 367.(J - 2 -- (J -- 14)/12.12)/12 -- 3

,((I -5 4900 -5 (J -- 14)/12)/100)/4

The authors have yet to discover the algorithm of comparable
compactness for converting a Julian Date back to a calendar date.
But in preference to leaving the problem undiscussed, the follow-
ing is offered (presented as a FORTRAN subroutine) :

SUBROUTINE DATE (JD, I, J, K)
L = JD -5 68569
N = 4.L/146097
L = L - (146097.N -5 3)/4
I = 4000*(L -5 1)/1461001
L = L -- 1461.I/4 -5 31
J = 80.L/2447
K = L - 2447.J/80
L = J / l l
J = J + 2 - 12*L
I = 100*(N -- 49) -5 I -5 L
RETUR N
END

HENRY F. FLIEOEL

Georgetown University Observatory
Washington, D.C.
AND

THOMAS C. VAN FLANDERN
U.S. Naval Observatory
Washington, DC 20390

O n " P r i m e P h r a s e " i n F c l d m a n a n d G r i e s P a p e r

Key Words and Phrases: compilers, operator precedence, trans-
lator writ ing systems

CR Categories: 4.12

EDITOR :
The article by Feldman and Gries on Translator Writing Sys-

tems [Comm. ACM 11, 2 (Feb. 1968), 77-113] is an excellent one,
but one error in it ought to be corrected. In their description of
operator precedence parsing on page 82, they give a definition
of a prime phrase as "a phrase which contains no phrase other
than itself but at least one terminal character ." In Floyd 's origi-
nal article on the subject [J.ACM 10 (Juh 1963), 316-333], a prime
phrase was defined to be a phrase which contains no prime phrase
other than itself but at least one terminal character. I t may not
be obvious tha t the two definitions are not equivalent. The dif-
ference shows up when the grammar in question has a production
whose right side consists of one nonterminal symbol.

Consider the grammar:
S ~ aU1b
Ui ~ U~
U ~ b

Then in the sentence "aU2b", "U2" is a phrase but not a prime
phrase by either definition. Hence "aU~b" is a prime phrase by
Floyd but not by Feldman and Gries.

If Feldman and Gries 's definition is used, a parse may reach a
state where there are no prime phrases and hence the parse cannot
be continued.

PAUL ABRAHAMS

New York University
Courant Institute of Mathematical Sciences
251 Mercer Street
New York, N Y 10012

D o Y o u U s e M i c r o f i c h e ?

Key Words and Phrases: microfiche, user study, document
surrogates

CR Categories: 3.7, 3.72, 3.79

EDITOR :
There has been a growing tendency for Federal agencies to en-

courage, usually through differential pricing, the distr ibution of
microfiche instead of full size copies of reports. The economic
advantages of microfiche are obvious to the issuing agencies (and
to the General Accounting Office); agency distr ibution lists show
tha t some libraries actually prefer to receive microfiche. We have
little information, however, on the acceptance and use of micro-
fiche by individual scientists and engineers.

I have been asked by COSATI (the Committee on Scientific
and Technical Information of the Federal Council for Science
and Technology) to look into this mat ter . Those of your readers
who have actually been offered the opportuni ty of using microfiche
and have strong opinions on such subjects as legibility, con-
venience, availability, and quali ty of readers and reader-printers
and kindred topics are encouraged to write to me. I am especially
interested in hearing from those who have found it possible, or
even preferable, to use microfiche in maintaining their personal

V o l u m e 11 / N u m b e r 10 / O c t o b e r , 1968 C o m m u n i c a t i o n s o f t h e ACM 657

report collections. I cannot guarantee to answer individual
let ters , bu t all respondents will receive copies of a summary
repor t - - in full size, hard copy!

HAROLD WOOSTER

AFOSR/SRI, 1500 Wilson Blvd.
Arlington, VA 22209

C o m m e n t o n C u r r i c u l u m 68

Key Words and Phrases : computer science curriculum, com-
puter case studies, sys tem case s tudies

CR Categories: 1.52

EDITOR :

May I point out a deficiency in Curr iculum 68 [Comm. ACM 11,
3(Mar. 1968) 151-197]: i ts lack of o r ien ta t ion to the prac t i t ioners
of computer sys tems analysis.

A good educat ion should not be solely directed toward academi-
cians whose only economic j ust if icat ion is to teach in order to tu rn
out recursively new generat ions of academicians. Such has been
the problem in the teaching of economics since i t was defined as a
subjec t wi thou t ins t i tu t iona l content . Univers i ty economic de-
pa r tmen t s (notably not in the schools of business) have turned out
t r a ined economic theoret ic ians who have found l i t t le re la t ionship
between the i r academic knowledge and the exist ing pract ices
which guide business firms and government . A balanced educat ion
in economics mus t properly emphasize the descript ions of exist ing
economic ins t i tu t ions as well as the inadequate theories of eco-
nomics.

Thus, in the educat ion of the undergradua te computer sc ient is t
(?), emphasis mus t be given to a descript ion of wha t a prac t i t ioner
of computer science does as well as to the teaching of the inade-
quate theories of the science (?).

If th is is not done, pract ical men will place the required "in-
s t i t u t i ona l " courses in other depa r tmen t s of the univers i ty . This
would be comparable to the current pract ice of tak ing business
" i n s t i t u t i o n a l " courses in the school of business and not in the
economics depa r tmen t .

Concretely, I find i t difficult to accept an undergradua te cur-
r iculum in this field which would not include six academic hours
in the s tudy of exist ing computer systems, i.e. case s tudies . The
college graduate t ra ined in computer science will work mos t l ikely
in the env i ronment of such systems. Why not , therefore, give the
apprent ice sc ient is t a f rame of reference for the appl ica t ion of
theories t h a t are being taught .

In a way, the repor t a t t empt s to c i rcumvent th is cri t icism by
s ta t ing :

I t is also likely t h a t the major i ty of a p p l i c a t i o n p r o g r a m m e r s in
such areas as business da ta processing, scientific research and
engineer ing analysis will cont inue to be specialists educated in
the re la ted subjec t m a t t e r areas, a l though such s tuden t s can un-
doubtedly profit by t ak ing a number of computer courses.

The impl icat ion is t h a t computer science can be isolated from a
sys tem of applicat ion. However, upon close examinat ion the
recommended course work is h ighly s lan ted towards the needs of
physical sc ient is ts and engineers. Very much neglected are the
knowledge requi rements of business systems designers and infor-
mat ion technologists .

RAYMOND P. WISHNER
American University
Center for Technology
Washington, D. C.

O n B i n a r y N o t a t i o n

Key Words and Phrases : representa t ion , nota t ion , b inary num-
bers, b inary exponent ia l numbers , memory, two

CR Categories: 1.9, 2.44, 4.0, 5.0, 5.29
EDITOR:

Although more accurate, unambiguous no ta t ion is badly needed
for numbers of b inary origin, I don ' t t h ink the suggest ion [1, 2, 3]
of a special symbol for 2 t° is the best solution. Would i t no t be more
precise and convenient if numbers to be expressed in b ina ry were
wri t t en in t e rms of a coefficient and an exponent of two (e.g.
3 X21~), r a the r t han using an exponent of the decimal number 10247

FORTRAN uses the le t te r "E" to separa te the coefficient f rom i ts
decimal exponent (e.g. 5E7=5X107); why not use a symbol - -pe r -
haps the le t ter " B " - - i n the same manner , for the base two? (Some
assembly languages use B th is way, bu t some FORTRAN use B to
indicate octal. This conflict could be easi ly resolved by choice of
another symbol, or by the use of different symbols for octal or hex
digits.) I t h ink 3B20, the decimal b ina ry power no ta t ion for 3X220,
makes more sense t han the deci-power no ta t ion 3bK2 [3X (21°)~].
Fur thermore , a memory of B15 is addressable wi th 15 b i t s - - a fact
not apparen t from the expression 2~bK1 or 32bK. An addi t ional
benefit is t h a t th is scheme is a lmost analogous to the in te rna l
represen ta t ion of f loat ing-point numbers in most computers . The
handy rule of t h u m b : 210 ~ 103, remains equal ly h a n d y wi thou t
inven t ing ano ther uni t . Memory sizes of "131K" could be de-
scribed as 217 or B17 (or verbal ly , as " b e e " seventeen) .

Wi th the ridiculous choice of le t te rs A, B, C, D, E, F as hexa-
decimal number symbols adding to a l ready t roublesome problems
of d is t inguishing octal (or hex) numbers from decimal numbers
(or var iable names) , the t ime is overripe for reconsiderat ion of our
number symbols. This should have been done before poor choices
gelled into a de facto s t andard! Why represent some of the non-
decimal numbers wi th the symbols which imply to us a base- ten
place-value scheme? Why not use en t i re ly new symbols (and
names) for the seven or fifteen nonzero digits needed in octal or
hex. Even use of the le t te rs A th rough P would be an improvement ,
bu t en t i re ly new symbols could reflect the b ina ry na tu re of the
system,

ABE,,= ~ ~ --J4 J--/= 527c,

~JO~ -2 = J14J~
making menta l bi t -shif t ing, octal-hex conversion, b ina ry-po in t
fract ions, and even display reading much easier. I believe we
would profit from the trade-off between the addi t ion of 15 new
symbols and the e l iminat ion of monstrosi t ies such as

ABE16=5276s=2750 and X'123B9".

REFERENCES :
1, TRYTTEN, JOHN. Let ter . Datamation 10, 2 (Feb. 1964), 6.
2. MORRISON, DONALD n . Le t te r to the Edi tor . Comm. ACM] 11,

3 (Mar. 1968), 150.
3. GIVENS, WALLACE. Le t te r to the Edi tor . Comm. ACM 11, 6

(June 1968), 391.
BRUCE A. MARTIN
Applied Mathematics Department
Brookhaven National Laboratory
Associated Universities, Inc.
Upton, Long Island, N Y 11978

658 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 11 / N u m b e r 10 / O c t o b e r , 1968

