Welcome to the NavList Message Boards.

NavList:

A Community Devoted to the Preservation and Practice of Celestial Navigation and Other Methods of Traditional Wayfinding

Compose Your Message

Message:αβγ
Message:abc
Add Images & Files
    Name or NavList Code:
    Email:
       
    Reply
    Bygrave formula
    From: Hanno Ix
    Date: 2014 Jun 5, 23:08 -0700

    Why has Bygrave chosen his particular set of equations and his design?

    The formula :

    sin(hc) = sin(D)·sin(L) + cos(D)·cos(L)·cos(t)

    can, in principle, solved with a conceptually simpler slide rule: one that has just one helical scale, namely log(cos(x)) scale or log(sin(x)) scale.  You'd also need at least 2 cursors that can be moved as a set and individually.  You would not have to match the scales on 2 telescoping drums as necessary for the Bygrave- a difficult requirement according to G LaPook's description. As cursors you'd print cross hairs on on each of two transparent cylindrical foils fitting each other and, as a set, the drum that is imprinted with the scale. A third set of cross hairs - fixed in reference to the first - could be printed on one of the foils. It would allow an automatic wrap around. The general set-up would follow the Fuller slide rule design.

    If you want to be fancier you could have 2 copies of the same scale mounted coaxially on the same core. Since their diameters are identical lining them up would be easier. To see what I mean you might want to see USpatent 1,597,484 by Ritow.

    Just like with the Bygrave you'd proceed in 3 steps: first sin(D)·sin(L) and then cos(D)·cos(L)·cos(t) and finally adding these. The fact that the second operation has three components is but a small complication as anyone who has used slide rules can confirm.

    Now, before I rush into my garage to build such a thing please convince me that these are bad ideas!

    Hanno

     

       
    Reply
    Browse Files

    Drop Files

    NavList

    What is NavList?

    Get a NavList ID Code

    Name:
    (please, no nicknames or handles)
    Email:
    Do you want to receive all group messages by email?
    Yes No

    A NavList ID Code guarantees your identity in NavList posts and allows faster posting of messages.

    Retrieve a NavList ID Code

    Enter the email address associated with your NavList messages. Your NavList code will be emailed to you immediately.
    Email:

    Email Settings

    NavList ID Code:

    Custom Index

    Subject:
    Author:
    Start date: (yyyymm dd)
    End date: (yyyymm dd)

    Visit this site
    Visit this site
    Visit this site
    Visit this site
    Visit this site
    Visit this site